Abu‐Laban,, M., Muley,, P. D., Hayes,, D. J., & Boldor,, D. (2017). Ex‐situ up‐conversion of biomass pyrolysis bio‐oil vapors using Pt/Al2O3 nanostructured catalyst synergistically heated with steelballs via induction. Catalysis Today, 291, 3–12. https://doi.org/10.1016/j.cattod.2017.01.010
Adam,, J., Antonakou,, E., Lappas,, A., Stöcker,, M., Nilsen,, M. H., Bouzga,, A., … Øyed,, G. (2006). In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 96, 93–101. https://doi.org/10.1016/j.micromeso.2006.06.021
Adam,, J., Blazsó,, M., Mészáros,, E., Stöcker,, M., Nilsen,, M. H., Bouzga,, A., … Øyed,, G. (2005). Pyrolysis of biomass in the presence of Al‐MCM‐41 type catalysts. Fuel, 84, 1494–1502. https://doi.org/10.1016/j.fuel.2005.02.006
Adjaye,, J. D., & Bakhshi,, N. N. (1995). Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio‐oil. Part I: Conversion over various catalysts. Fuel Processing Technology, 45, 161–183. https://doi.org/10.1016/0378-3820(95)00034-5
Adjaye,, J. D., Katikaneni,, S. P. R., & Bakhshi,, N. N. (1996). Catalytic conversion of a biofuel to hydrocarbons: Effect of mixtures of HZSM‐5 and silica‐alumina catalysts on product distribution. Fuel Processing Technology, 48, 115–143. https://doi.org/10.1016/S0378-3820(96)01031-4
Aho,, A., Kumar,, N., Eränen,, K., Salmi,, T., Hupa,, M., & Murzin,, D. Y. (2007). Catalytic pyrolysis of biomass in a fluidized bed reactor: Influence of the acidity of H‐beta zeolite. Process Safety and Environmental Protection, 85(B5), 473–480. https://doi.org/10.1205/psep07012
Aho,, A., Kumar,, N., Eränen,, K., Salmi,, T., Hupa,, M., & Murzin,, D. Y. (2008). Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel, 87, 2493–2501. https://doi.org/10.1016/j.fuel.2008.02.015
Antonakou,, E., Lappas,, A., Nilsen,, M. H., Bouzga,, A., & Stöcker,, M. (2006). Evaluation of various types of Al‐MCM‐41 materials as catalysts in biomass pyrolysis for the production of bio‐fuels and chemicals. Fuel, 85, 2202–2212. https://doi.org/10.1016/j.fuel.2006.03.021
Arteaga‐Perez,, L. E., Capiro,, O. G., Romero,, R., Delgado,, A., Olivera,, P., Ronsse,, F., & Jimenez,, R. (2017). In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel‐supported catalysts. Energy, 128, 701–712. https://doi.org/10.1016/j.energy.2017.04.024
Asadieraghi,, M., & Daud,, W. M. A. W. (2015). In‐situ catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multi‐zone fixed bed reactor. Energy Conversion and Management, 101, 151–163. https://doi.org/10.1016/j.enconman.2015.05.008
Atutxa,, A., Aguado,, R., Gayubo,, A. G., Olazar,, M., & Bilbao,, J. (2005). Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy %26 Fuels, 19, 765–774. https://doi.org/10.1021/ef040070h
Braga,, R. M., Melo,, D. M. A., Sobrinho,, E. V., Barros,, J. M. F., Melo,, M. A. F., Carvalho,, A. F. M., … Freitas,, J. C. O. (2017). Catalytic upgrading of elephant grass (Pennisetum purpureum Schum) pyrolysis vapor using WO3 supported on RHA and RHA‐MCM‐41. Catalysis Today, 279, 224–232. https://doi.org/10.1016/j.cattod.2016.06.003
Bridgwater,, A. V. (1999). Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 51(1), 3–22. https://doi.org/10.1016/S0165-2370(99)00005-4
Bridgwater,, A. V., & Peacocke,, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6
Carlson,, T. R., Cheng,, Y.‐T., Jae,, J., & Huber,, G. W. (2011). Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy %26 Environmental Science, 4, 145–161. https://doi.org/10.1039/c0ee00341g
Cheng,, S., Wei,, L., Zhao,, X., & Julson,, J. (2016). Application, deactivation, and regeneration of heterogeneous catalysts in bio‐oil upgrading. Catalysts, 6(12), 195. https://doi.org/10.3390/catal6120195
Cheng,, Y.‐T., Jae,, J., Shi,, J., Fan,, W., & Huber,, G. W. (2012). Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM‐5 catalysts. Angewandte Chemie International Edition, 51, 1387–1390. https://doi.org/10.1002/anie.201107390
Custodis,, V. B. F., Karakoulia,, S. A., Triantafyllidis,, K. S., & van Bokhoven,, J. A. (2016). Catalytic fast pyrolysis of lignin over high‐surface‐area mesoporous aluminosilicates: Effect of porosity and acidity. ChemSusChem, 9, 1134–1145. https://doi.org/10.1002/cssc.201600105
Du,, S., Gamliel,, D. P., Valla,, J. A., & Bollas,, G. M. (2016). The effect of ZSM‐5 catalyst support in catalytic pyrolysis of biomassand compounds abundant in pyrolysis bio‐oils. Journal of Analytical and Applied Pyrolysis, 122, 7–12. https://doi.org/10.1016/j.jaap.2016.11.002
Engtrakul,, C., Mukarakate,, C., Starace,, A. K., Magrini,, K. A., Rogers,, A. K., & Yung,, M. M. (2016). Effect of ZSM‐5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catalysis Today, 269, 175–181. https://doi.org/10.1016/j.cattod.2015.10.032
Fermoso,, J., Hernando,, H., Jana,, P., Moreno,, I., Přechc,, J., Ochoa‐Hernández,, C., … Serrano,, D. P. (2016). Lamellar and pillared ZSM‐5 zeolites modified with MgO and ZnO for catalytic fast‐pyrolysis of eucalyptus woodchips. Catalysis Today, 277, 171–181. https://doi.org/10.1016/j.cattod.2015.12.009
Fermoso,, J., Pizarro,, P., Coronado,, J. M., & Serrano,, D. P. (2017). Advanced biofuels production by upgrading of pyrolysis bio‐oil. WIREs Energy Environ, 6(4), e245. https://doi.org/10.1002/wene.245
Foster,, A. J., Jae,, J., Cheng,, Y.‐T., Huber,, G. W., & Lobo,, R. F. (2012). Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM‐5. Applied Catalysis A: General, 423–424, 154–161. https://doi.org/10.1016/j.apcata.2012.02.030
French,, R., & Czernik,, S. (2010). Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 91, 25–32. https://doi.org/10.1016/j.fuproc.2009.08.011
Galadima,, A., & Muraza,, O. (2015). In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Conversion and Management, 105, 338–354. https://doi.org/10.1016/j.enconman.2015.07.078
Gamliel,, D. P., Cho,, H. J., Fan,, W., & Valla,, J. A. (2016). On the effectiveness of tailored mesoporous MFI zeolites for biomass catalytic fast pyrolysis. Applied Catalysis A: General, 522, 109–119. https://doi.org/10.1016/j.apcata.2016.04.026
Gamliel,, D. P., Du,, S., Bollas,, G. M., & Valla,, J. A. (2015). Investigation of in situ and ex situ catalytic pyrolysis of miscanthus x giganteus using a PyGC–MS microsystem and comparison with a bench‐scale spouted‐bed reactor. Bioresource Technology, 191, 187–196. https://doi.org/10.1016/j.biortech.2015.04.129
Güngör,, A., Önen,, S., Ucąr,, S., & Yanik,, J. (2012). Comparison between the “one‐step” and “two‐step” catalytic pyrolysis of pine bark. Journal of Analytical and Applied Pyrolysis, 97, 39–48. https://doi.org/10.1016/j.jaap.2012.06.011
Hernando,, H., Moreno,, I., Fermoso,, J., Ochoa‐Hernández,, C., Pizarro,, P., Coronado,, J. M., … Serrano,, D. P. (2017). Biomass catalytic fast pyrolysis over hierarchical ZSM‐5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conversion and Biorefinery, 7, 289–304. https://doi.org/10.1007/s13399-017-0266-6
Horne,, P. A., & Williams,, P. T. (1994). Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Renewable Energy, 5, 810–812. https://doi.org/10.1016/0960-1481(94)90093-0
Hu,, C., Xiao,, R., & Zhang,, H. (2017). Ex‐situ catalytic fast pyrolysis of biomass over HZSM‐5 in a two‐stage fluidized‐bed/fixed‐bed combination reactor. Bioresource Technology, 243, 1133–1140. https://doi.org/10.1016/j.biortech.2017.07.011
Iisa,, K., French,, R. J., Orton,, K. A., Budhi,, S., Mukarakate,, C., Stanton,, A. R., … Nimlos,, M. R. (2016). Catalytic pyrolysis of pine over HZSM‐5 with different binders. Topics in Catalysis, 59, 94–108. https://doi.org/10.1007/s11244-015-0509-3
Iliopoulou,, E. F., Antonakou,, E. V., Karakoulia,, S. A., Vasalos,, I. A., Lappas,, A. A., & Triantafyllidis,, K. S. (2007). Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al‐MCM‐41 catalysts. Chemical Engineering Journal, 134, 51–57. https://doi.org/10.1016/j.cej.2007.03.066
Iliopoulou,, E. F., Stefanidis,, S. D., Kalogiannis,, K. G., Delimitis,, A., Lappas,, A. A., & Triantafyllidis,, K. S. (2012). Catalytic upgrading of biomass pyrolysis vapors using transition metal‐modified ZSM‐5 zeolite. Applied Catalysis B: Environmental, 127, 281–290. https://doi.org/10.1016/j.apcatb.2012.08.030
Iliopoulou,, E. F., Stefanidis,, S. D., Kalogiannis,, K. G., Psarras,, A. C., Delimitis,, A., Triantafyllidis,, K. S., & Lappas,, A. A. (2014). Pilot‐scale validation of Co‐ZSM‐5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours. Green Chemistry, 16, 662–674. https://doi.org/10.1039/C3GC41575A
Imran,, A., Bramer,, E. A., Seshan,, K., & Brem,, G. (2014). High quality bio‐oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina‐supported sodium carbonate. Fuel Processing Technology, 127, 72–79. https://doi.org/10.1016/j.fuproc.2014.06.011
Jeon,, M.‐J., Jeon,, J.‐K., Suh,, D. J., Park,, S. H., Sa,, Y. J., Joo,, S. H., & Park,, Y.‐K. (2013). Catalytic pyrolysis of biomass components over mesoporous catalysts using Py‐GC/MS. Catalysis Today, 204, 170–178. https://doi.org/10.1016/j.cattod.2012.07.039
Jeon,, M.‐J., Kim,, S.‐S., Jeon,, J.‐K., Park,, S. H., Kim,, J. M., Sohn,, J. M., … Park,, Y.‐K. (2012). Catalytic pyrolysis of waste rice husk over mesoporous materials. Nanoscale Research Letters, 7, 1–5. https://doi.org/10.1186/1556-276x-7-18
Kaewpengkrow,, P., Atong,, D., & Sricharoenchaikul,, V. (2014). Catalytic upgrading of pyrolysis vapors from Jatropha wastes using alumina, zirconia and titania based catalysts. Bioresource Technology, 163, 262–269. https://doi.org/10.1016/j.biortech.2014.04.035
Kantarelis,, E., Yang,, W., & Blasiak,, W. (2014a). Effect of zeolite to binder ratio on product yields and composition during catalytic steam pyrolysis of biomass over transition metal modified HZSM5. Fuel, 122, 119–125. https://doi.org/10.1016/j.fuel.2013.12.054
Kantarelis,, E., Yang,, W., & Blasiak,, W. (2014b). Effects of silica‐supported nickel and vanadium on liquid products of catalytic steam pyrolysis of biomass. Energy %26 Fuels, 28, 591–599. https://doi.org/10.1021/ef401939g
Karnjanakom,, S., Suriya‐umporn,, T., Bayu,, A., Kongparakul,, S., Samart,, C., Fushimi,, C., … Guan,, G. (2017). High selectivity and stability of Mg‐doped Al‐MCM‐41 for in‐situ catalytic upgrading fast pyrolysis bio‐oil. Energy Conversion and Management, 142, 272–285. https://doi.org/10.1016/j.enconman.2017.03.049
Kelkar,, S., Saffron,, C. M., Andreassi,, K., Li,, Z., Murkute,, A., Miller,, D. J., … Kriegel,, R. M. (2015). A survey of catalysts for aromatics from fast pyrolysis of biomass. Applied Catalysis B: Environmental, 174, 85–95. https://doi.org/10.1016/j.apcatb.2015.02.020
Kelkar,, S., Saffron,, C. M., Li,, Z., Kim,, S.‐S., Pinnavaia,, T. J., Miller,, D. J., & Kriegel,, R. (2014). Aromatics from biomass pyrolysis vapour using a bifunctional mesoporous catalyst. Green Chemistry, 16, 803–812. https://doi.org/10.1039/C3GC41350K
Kim,, S.‐S., Lee,, H. W., Ryoo,, R., Kim,, W., Park,, S. H., Jeon,, J.‐K., & Park,, Y.‐K. (2014). Conversion of Kraft lignin over hierarchical MFI zeolite. Journal of Nanoscience and Nanotechnology, 14, 2414–2418. https://doi.org/10.1166/jnn.2014.8545
Koike,, N., Hosokai,, S., Takagaki,, A., Nishimura,, S., Kikuchi,, R., Ebitani,, K., … Oyama,, S. T. (2016). Upgrading of pyrolysis bio‐oil using nickel phosphide catalysts. Journal of Catalysis, 333, 115–126. https://doi.org/10.1016/j.jcat.2015.10.022
Kubiĉka,, D., Kubiĉkov́,, I., & Ĉejka,, J. (2013). Application of molecular sieves in transformations of biomass and biomass‐derived feedstocks. Catalysis Reviews – Science and Engineering, 55(1), 1–78. https://doi.org/10.1080/01614940.2012.685811
Lee,, H. I., Park,, H. J., Park,, Y.‐K., Hur,, J. Y., Jeon,, J.‐K., & Kim,, J. M. (2008). Synthesis of highly stable mesoporous aluminosilicates from commercially available zeolites and their application to the pyrolysis of woody biomass. Catalysis Today, 132, 68–74. https://doi.org/10.1016/j.cattod.2007.12.029
Lei,, X.‐G., Jockusch,, S., Francesca Ottaviani,, M., & Turro,, N. J. (2003). In situ EPR investigation of the addition of persistent benzyl radicals to acrylates on ZSM‐5 zeolites direct spectroscopic detection of the initial steps in a supramolecular photopolymerization. Photochemical and Photobiological Sciences, 2(11), 1095–1100. https://doi.org/10.1039/b307735g
Li,, J., Li,, X., Zhou,, G., Wang,, W., Wang,, C., Komarneni,, S., & Wang,, Y. (2014). Catalytic fast pyrolysis of biomass with mesoporous ZSM‐5 zeolites prepared by desilication with NaOH solutions. Applied Catalysis A: General, 470, 115–122. https://doi.org/10.1016/j.apcata.2013.10.040
Li,, P., Li,, D., Yang,, H., Wang,, X., & Chen,, H. (2016). Effects of Fe‐, Zr‐, and Co‐modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors. Energy %26 Fuels, 30, 3004–3013. https://doi.org/10.1021/acs.energyfuels.5b02894
Lu,, Q., Zhang,, Y., Tang,, Z., Li,, W.‐z., & Zhu,, X.‐f. (2010). Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts. Fuel, 89, 2096–2103. https://doi.org/10.1016/j.fuel.2010.02.030
Lu,, Q., Zhang,, Z., Wang,, X., Dong,, C., & Liu,, Y. (2014). Catalytic upgrading of biomass fast pyrolysis vapors using ordered mesoporous ZrO2, TiO2 and SiO2. Energy Procedia, 61, 1937–1941. https://doi.org/10.1016/j.egypro.2014.12.247
Lu,, Q., Zhang,, Z.‐F., Dong,, C.‐Q., & Zhu,, X.‐F. (2010). Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical Py‐GC/MS study. Energies, 3, 1805–1820. https://doi.org/10.3390/en3111805
Ma,, Z., Wei,, L., Zhou,, W., Jia,, L., Hou,, B., Li,, D., & Zhao,, Y. (2015). Overview of catalyst application in petroleum refinery for biomass catalytic pyrolysis and bio‐oil upgrading. RSC Advances, 5(107), 88287–88297. https://doi.org/10.1039/C5RA17241A
Mihalcik,, D. J., Mullen,, C. A., & Boateng,, A. A. (2011). Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. Journal of Analytical and Applied Pyrolysis, 92, 224–232. https://doi.org/10.1016/j.jaap.2011.06.001
Mukarakate,, C., Watson,, M. J., ten Dam,, J., Baucherel,, X., Budhi,, S., Yung,, M. M., … Nimlos,, M. R. (2014). Upgrading biomass pyrolysis vapors over (small beta)‐zeolites: Role of silica‐to‐alumina ratio. Green Chemistry, 16, 4891–4905. https://doi.org/10.1039/c4gc01425a
Mullen,, C. A., & Boateng,, A. A. (2013). Accumulation of inorganic impurities on HZSM‐5 zeolites during catalytic fast pyrolysis of switchgrass. Industrial and Engineering Chemistry Research, 52, 17156–17161. https://doi.org/10.1021/ie4030209
Mullen,, C. A., Tarves,, P. C., Raymundo,, L. M., Schultz,, E., Boateng,, A. A., & Trierweiler,, J. O. (2018). Fluidized Bed Catalytic Pyrolysis of Eucalyptus over HZSM‐5: Effect of Acid Density and Ga Modification on Catalyst Deactivation. Energy Fuels, 32(2), 1771–1778. https://doi.org/10.1021/acs.energyfuels.7b02786
Neumann,, G. T., & Hicks,, J. C. (2012a). Effects of cerium and aluminum in cerium‐containing hierarchical HZSM‐5 catalysts for biomass upgrading. Topics in Catalysis, 55, 196–208. https://doi.org/10.1007/s11244-012-9788-0
Neumann,, G. T., & Hicks,, J. C. (2012b). Novel hierarchical cerium‐incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. ACS Catalysis, 2, 642–646. https://doi.org/10.1021/cs200648q
Nguyen,, T. S., Lefferts,, L., Gupta,, K. B. S. S., & Seshan,, K. (2015). Catalytic conversion of biomass pyrolysis vapours over sodium‐based catalyst: A study on the state of sodium on the catalyst. ChemCatChem, 7, 1833–1840. https://doi.org/10.1002/cctc.201500236
Nguyen,, T. S., Zabeti,, M., Lefferts,, L., Brem,, G., & Seshan,, K. (2013). Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresource Technology, 142, 353–360. https://doi.org/10.1016/j.biortech.2013.05.023
Nguyen,, T. S., Zabeti,, M., Lefferts,, L., Bremb,, G., & Seshan,, K. (2013). Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass and Bioenergy, 48, 100–110. https://doi.org/10.1016/j.biombioe.2012.10.024
Nilsen,, M. H., Antonakou,, E., Bouzga,, A., Lappas,, A., Mathisen,, K., & Stöcker,, M. (2007). Investigation of the effect of metal sites in Me–Al‐MCM‐41 (Me = Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass. Microporous and Mesoporous Materials, 105, 189–203. https://doi.org/10.1016/j.micromeso.2007.05.059
Park,, H. J., Dong,, J.‐I., Jeon,, J.‐K., Yoo,, K.‐S., Yim,, J.‐H., Sohn,, J. M., & Park,, Y.‐K. (2007). Conversion of the pyrolytic vapor of radiata pine over zeolites. Journal of Industrial and Engineering Chemistry, 13, 182–189.
Park,, H. J., Heo,, H. S., Jeon,, J.‐K., Kim,, J., Ryoo,, R., Jeong,, K.‐E., & Park,, Y.‐K. (2010). Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust‐derived pyrolytic vapors over mesoporous MFI zeolites. Applied Catalysis B: Environmental, 95, 365–373. https://doi.org/10.1016/j.apcatb.2010.01.015
Park,, H. J., Park,, K.‐H., Jeon,, J.‐K., Kim,, J., Ryoo,, R., Jeong,, K.‐E., … Park,, Y.‐K. (2012). Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 97, 379–384. https://doi.org/10.1016/j.fuel.2012.01.075
Pattiya,, A., Titiloye,, J. O., & Bridgwater,, A. V. (2008). Fast pyrolysis of cassava rhizome in the presence of catalysts. Journal of Analytical and Applied Pyrolysis, 81, 72–79. https://doi.org/10.1016/j.jaap.2007.09.002
Qi,, W. Y., Hu,, C. W., Li,, G. Y., Guo,, L. H., Yang,, Y., Luo,, J., … Du,, Y. (2006). Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chemistry, 8, 183–190. https://doi.org/10.1039/b510602h
Qiang,, L., Wen‐zhi,, L., Dong,, Z., & Xi‐feng,, Z. (2009). Analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) of sawdust with Al/SBA‐15 catalysts. Journal of Analytical and Applied Pyrolysis, 84, 131–138. https://doi.org/10.1016/j.jaap.2009.01.002
Rizkiana,, J., Guan,, G., Widayatno,, W. B., Yang,, J., Hao,, X., Matsuoka,, K., & Abudula,, A. (2016). Mg‐modified ultra‐stable Y type zeolite for the rapid catalytic co‐pyrolysis of low‐rank coal and biomass. RSC Advances, 6, 2096–2105. https://doi.org/10.1039/c5ra24395e
Stefanidis,, S., Kalogiannis,, K., Iliopoulou,, E. F., Lappas,, A. A., Triguero,, J. M., Navarro,, M. T., … Rey,, F. (2013). Mesopore‐modified mordenites as catalysts for catalytic pyrolysis of biomass and cracking of vacuum gasoil processes. Green Chemistry, 15, 1647–1658. https://doi.org/10.1039/c3gc40161h
Stefanidis,, S. D., Kalogiannis,, K. G., Iliopoulou,, E. F., Lappas,, A. A., & Pilavachi,, P. A. (2011). In‐situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. Bioresource Technology, 102, 8261–8267. https://doi.org/10.1016/j.biortech.2011.06.032
Stefanidis,, S. D., Karakoulia,, S. A., Kalogiannis,, K. G., Iliopoulou,, E. F., Delimitis,, A., Yiannoulakis,, H., … Triantafyllidis,, K. S. (2016). Natural magnesium oxide (MgO) catalysts: A cost‐effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Applied Catalysis B: Environmental, 196, 155–173. https://doi.org/10.1016/j.apcatb.2016.05.031
Stöcker,, M. (2008). Biofuels and biomass‐to‐liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 47, 9200–9211. https://doi.org/10.1002/anie.200801476
Taarning,, E., Osmundsen,, C. M., Yang,, X., Voss,, B., Andersen,, S. I., & Christensen,, C. H. (2011). Zeolite‐catalyzed biomass conversion to fuels and chemicals. Energy %26 Environmental Science, 4, 793–804. https://doi.org/10.1039/C004518G
Torri,, C., Reinikainen,, M., Lindfors,, C., Fabbri,, D., Oasmaa,, A., & Kuoppala,, E. (2010). Investigation on catalytic pyrolysis of pine sawdust: Catalyst screening by Py‐GC‐MIP‐AED. Journal of Analytical and Applied Pyrolysis, 88, 7–13. https://doi.org/10.1016/j.jaap.2010.02.005
Triantafyllidis,, K. S., Iliopoulou,, E. F., Antonakou,, E. V., Lappas,, A. A., Wang,, H., & Pinnavaia,, T. J. (2007). Hydrothermally stable mesoporous aluminosilicates (MSU‐S) assembled from zeolite seeds as catalysts for biomass pyrolysis. Microporous and Mesoporous Materials, 99, 132–139. https://doi.org/10.1016/j.micromeso.2006.09.019
Uzun,, B. B., & Sarioğlu,, N. (2009). Rapid and catalytic pyrolysis of corn stalks. Fuel Processing Technology, 90, 705–716. https://doi.org/10.1016/j.fuproc.2009.01.012
Valle,, B., Castaño,, P., Olazar,, M., Bilbao,, J., & Gayubo,, A. G. (2012). Deactivating species in the transformation of crude bio‐oil with methanol into hydrocarbons on a HZSM‐5 catalyst. Journal of Catalysis, 285, 304–314. https://doi.org/10.1016/j.jcat.2011.10.004
Valle,, B., Gayubo,, A. G., Aguayo,, A. T., Olazar,, M., & Bilbao,, J. (2010). Selective production of aromatics by crude bio‐oil valorization with a nickel‐modified HZSM‐5 zeolite catalyst. Energy %26 Fuels, 24, 2060–2070. https://doi.org/10.1021/ef901231j
Veses,, A., Puértolas,, B., Callén,, M. S., & García,, T. (2015). Catalytic upgrading of biomass derived pyrolysis vapors over metal‐loaded ZSM‐5 zeolites: Effect of different metal cations on the bio‐oil final properties. Microporous and Mesoporous Materials, 209, 189–196. https://doi.org/10.1016/j.micromeso.2015.01.012
Veses,, A., Puértolas,, B., López,, J. M., Callén,, M. S., Solsona,, B., & García,, T. (2016). Promoting deoxygenation of bio‐oil by metal‐loaded hierarchical ZSM‐5 zeolites. ACS Sustainable Chemistry %26 Engineering, 4, 1653–1660. https://doi.org/10.1021/acssuschemeng.5b01606
Vichaphund,, S., Aht‐ong,, D., Sricharoenchaikul,, V., & Atong,, D. (2014). Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM‐5 catalysts: An analytical PY‐GC/MS. Renewable Energy, 65, 70–77. https://doi.org/10.1016/j.renene.2013.07.016
Vichaphund,, S., Aht‐ong,, D., Sricharoenchaikul,, V., & Atong,, D. (2015). Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM‐5 prepared by ion‐exchange and impregnation methods. Renewable Energy, 79, 28–37. https://doi.org/10.1016/j.renene.2014.10.013
Wang,, D., Xiao,, R., Zhang,, H., & He,, G. (2010). Comparison of catalytic pyrolysis of biomass with MCM‐41 and CaO catalysts by using TGA–FTIR analysis. Journal of Analytical and Applied Pyrolysis, 89, 171–177. https://doi.org/10.1016/j.jaap.2010.07.008
Wang,, J., Zhang,, B., Zhong,, Z., Ding,, K., Deng,, A., Min,, M., … Ruan,, R. (2017). Catalytic fast co‐pyrolysis of bamboo residual and waste lubricating oil over an ex‐situ dual catalytic beds of MgO and HZSM‐5: Analytical PY‐GC/MS study. Energy Conversion and Management, 139, 222–231. https://doi.org/10.1016/j.enconman.2017.02.047
Wang,, K., Johnston,, P. A., & Brown,, R. C. (2014). Comparison of in‐situ and ex‐situ catalytic pyrolysis in a micro‐reactor system. Bioresource Technology, 173, 124–131. https://doi.org/10.1016/j.biortech.2014.09.097
Williams,, P. T., & Horne,, P. A. (1995). Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass. Journal of Analytical and Applied Pyrolysis, 31, 15–37. https://doi.org/10.1016/0165-2370(94)00814-H
Xu,, M., Mukarakate,, C., Iisa,, K., Budhi,, S., Menart,, M., Davidson,, M., … Richards,, R. M. (2017). Deactivation of multilayered MFI nanosheet zeolite during upgrading of biomass pyrolysis vapors. ACS Sustainable Chemistry and Engineering, 5(6), 5477–5484. https://doi.org/10.1021/acssuschemeng.7b00817
Xu,, M., Mukarakate,, C., Robichaud,, D. J., Nimlos,, M. R., Richards,, R. M., & Trewyn,, B. G. (2016). Elucidating zeolite deactivation mechanisms during biomass catalytic fast pyrolysis from model reactions and zeolite syntheses. Topics in Catalysis, 59, 73–85. https://doi.org/10.1007/s11244-015-0507-5
Yildiz,, G., Pronk,, M., Djokic,, M., van Geem,, K. M., Ronsse,, F., van Duren,, R., & Prins,, W. (2013). Validation of a new set‐up for continuous catalytic fast pyrolysis of biomasscoupled with vapour phase upgrading. Journal of Analytical and Applied Pyrolysis, 103, 343–351. https://doi.org/10.1016/j.jaap.2013.02.001
Yildiz,, G., Ronsse,, F., Venderboschb,, R., van Duren,, R., Kerstend,, S. R. A., & Prins,, W. (2015). Effect of biomass ash in catalytic fast pyrolysis of pine wood. Applied Catalysis B: Environmental, 168–169, 203–211. https://doi.org/10.1016/j.apcatb.2014.12.044
Yildiz,, G., Ronsse,, F., Vercruysse,, J., Daels,, J., Toraman,, H. E., van Geem,, K. M., … Prins,, W. (2016). In situ performance of various metal doped catalysts in micro‐pyrolysis and continuous fast pyrolysis. Fuel Processing Technology, 144, 312–322. https://doi.org/10.1016/j.fuproc.2016.01.012
Yung,, M. M., Stanton,, A. R., Iisa,, K., French,, R. J., Orton,, K. A., & Magrini‐Bair,, K. A. (2016). Multi‐scale evaluation of catalytic upgrading of biomass pyrolysis vapors on Ni‐ and Ga‐modified ZSM‐5. Energy Fuels, 30(11), 9471–9479. https://doi.org/10.1021/acs.energyfuels.6b01866
Yung,, M. M., Starace,, A. K., Mukarakate,, C., Crow,, A., Leshnov,, M. A., & Magrini‐Bair,, K. A. (2016). Biomass catalytic pyrolysis on Ni/ZSM‐5: Effects of nickel pretreatment and loading. Energy Fuels, 30(7), 5259–5268. https://doi.org/10.1021/acs.energyfuels.6b00239
Zabeti,, M., Nguyen,, T. S., Lefferts,, L., Heeres,, H. J., & Seshan,, K. (2012). In situ catalytic pyrolysis of lignocellulose using alkali‐modified amorphous silica alumina. Bioresource Technology, 118, 374–381. https://doi.org/10.1016/j.biortech.2012.05.034
Zhang,, B., Zhong,, Z., Ding,, K., Cao,, Y., & Liu,, Z. (2014). Catalytic upgrading of corn stalk fast pyrolysis vapors with fresh and hydrothermally treated HZSM‐5 catalysts using Py‐GC/MS. Industrial %26 Engineering Chemistry Research, 53, 9979–9984. https://doi.org/10.1021/ie404426x
Zhang,, B., Zhong,, Z.‐P., Wang,, X.‐B., Ding,, K., & Song,, Z.‐W. (2015). Catalytic upgrading of fast pyrolysis biomass vapors over fresh, spent and regenerated ZSM‐5 zeolites. Fuel Processing Technology, 138, 430–434. https://doi.org/10.1016/j.fuproc.2015.06.011
Zhang,, H., Xiao,, R., Huang,, H., & Xiao,, G. (2009). Comparison of non‐catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology, 100, 1428–1434. https://doi.org/10.1016/j.biortech.2008.08.031
Zhang,, H., Zheng,, J., & Xiao,, R. (2013). Catalytic pyrolysis of willow wood with Me/ZSM‐5 (Me = Mg, K, Fe, Ga, Ni) to produce aromatics and olefins. BioResources, 8(4), 5612–5621.
Zhang,, X., Sun,, L., Chen,, L., Xie,, X., Zhao,, B., Si,, H., & Meng,, G. (2014). Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe(III)/CaO catalysts. Journal of Analytical and Applied Pyrolysis, 108, 35–40. https://doi.org/10.1016/j.jaap.2014.05.020
Zheng,, Y., Wang,, F., Yang,, X., Huang,, Y., Liu,, C., Zheng,, Z., & Gu,, J. (2017). Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal‐loaded modified H‐ZSM‐5. Journal of Analytical and Applied Pyrolysis, 126, 169–179. https://doi.org/10.1016/j.jaap.2017.06.011
Zhu,, X., Lu,, Q., Li,, W., & Zhang,, D. (2010). Fast and catalytic pyrolysis of xylan: Effects of temperature and M/HZSM‐5 (M = Fe, Zn) catalysts on pyrolytic products. Frontiers of Energy and Power Engineering in China, 4, 424–429. https://doi.org/10.1007/s11708-010-0015-z