Abnisa,, F., Arami‐Niya,, A., Wan Daud,, W. M. A., & Sahu,, J. N. (2013). Characterization of bio‐oil and bio‐char from pyrolysis of palm oil wastes. Bioenergy Research, 6(2), 830–840. https://doi.org/10.1007/s12155-013-9313-8
Adounkpe,, J., Khachatryan,, L., & Dellinger,, B. (2008). Radicals from the gas‐phase pyrolysis of hydroquinone: 1. Temperature dependence of the total radical yield. Energy %26 Fuels, 22(5), 2986–2990.
Adounkpe,, J., Khachatryan,, L., Dellinger,, B., & Ghosh,, M. (2009). Radicals from the atmospheric pressure pyrolysis and oxidative pyrolysis of hydroquinone, catechol, and phenol. Energy %26 Fuels, 23(3), 1551–1554.
Agarwal,, V., Dauenhauer,, P. J., Huber,, G. W., & Auerbach,, S. M. (2012). Ab initio dynamics of cellulose pyrolysis: Nascent decomposition pathways at 327 and 600 degrees c. Journal of the American Chemical Society, 134(36), 14958–14972. https://doi.org/10.1021/ja305135u
Akazawa,, M., Kojima,, Y., & Kato,, Y. (2015). Pyrolysate formation from four different phenyl propanols and classification of the initial reaction pathways. International Journal of Renewable Energy Technology, 4, 1–14.
Al‐Haddad,, M., Rendek,, E., Corriou,, J. P., & Mauviel,, G. (2010). Biomass fast pyrolysis: Experimental analysis and modeling approach. Energy %26 Fuels, 24(9), 4689–4692. https://doi.org/10.1021/ef901254g
Ansari,, K. B., Arora,, J. S., Chew,, J. W., Dauenhauer,, P. J., & Mushrif,, S. H. (2018). Effect of temperature and transport on the yield and composition of pyrolysis‐derived bio‐oil from glucose. Energy %26 Fuels, 32(5), 6008–6021. https://doi.org/10.1021/acs.energyfuels.8b00852
Antal,, M. J., Jr., Mok,, W. S. L., Roy,, J. C., & Anderson,, D. G. M. (1985). Pyrolytic sources of hydrocarbons from biomass. Journal of Analytical and Applied Pyrolysis, 8, 291–303.
Asatryan,, R., Bennadji,, H., Bozzelli,, J. W., Ruckenstein,, E., & Khachatryan,, L. (2017). Molecular products and fundamentally based reaction pathways in the gas‐phase pyrolysis of the lignin model compound p‐coumaryl alcohol. The Journal of Physical Chemistry. A, 121(18), 3352–3371. https://doi.org/10.1021/acs.jpca.7b01656
Ashcraft,, R. W., Heynderickx,, G. J., & Marin,, G. B. (2012). Modeling fast biomass pyrolysis in a gas–solid vortex reactor. Chemical Engineering Journal, 207, 195–208.
Asmadi,, M., Kawamoto,, H., & Saka,, S. (2011b). Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. Journal of Analytical and Applied Pyrolysis, 92(1), 88–98. https://doi.org/10.1016/j.jaap.2011.04.011
Asmadi,, M., Kawamoto,, H., & Saka,, S. (2011c). Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates. Journal of Analytical and Applied Pyrolysis, 92(1), 76–87. https://doi.org/10.1016/j.jaap.2011.04.012
Asmadi,, M., Kawamoto,, H., & Saka,, S. (2011a). Pyrolysis and secondary reaction mechanisms of softwood and hardwood lignins at the molecular level. In T. Yao, (Ed.), Zero‐carbon energy Kyoto 2010 (pp. 129–135). Japan: Springer. https://doi.org/10.1007/978-4-431-53910-0_16
Atreya,, A., Olszewski,, P., Chen,, Y., & Baum,, H. R. (2017). The effect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and firebrands. International Journal of Heat and Mass Transfer, 107, 319–328. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.051
Authier,, O., Ferrer,, M., Mauviel,, G., Khalfi,, A.‐E., & Lédé,, J. (2009). Wood fast pyrolysis: Comparison of lagrangian and eulerian modeling approaches with experimental measurements. Industrial %26 Engineering Chemistry Research, 48(10), 4796–4809.
Babu,, B. V., & Chaurasia,, A. S. (2004a). Heat transfer and kinetics in the pyrolysis of shrinking biomass particle. Chemical Engineering Science, 59(10), 1999–2012. https://doi.org/10.1016/j.ces.2004.01.050
Babu,, B. V., & Chaurasia,, A. S. (2004b). Parametric study of thermal and thermodynamic properties on pyrolysis of biomass in thermally thick regime. Energy Conversion and Management, 45(1), 53–72. https://doi.org/10.1016/s0196-8904(03)00130-4
Bach,, Q.‐V., & Chen,, W.‐H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (tga): A state‐of‐the‐art review. Bioresource Technology, 246, 88–100. https://doi.org/10.1016/j.biortech.2017.06.087
Bahng,, M. K., Mukarakate,, C., Robichaud,, D. J., & Nimlos,, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: A review. Analytica Chimica Acta, 651(2), 117–138. https://doi.org/10.1016/j.aca.2009.08.016
Bahrle,, C., Custodis,, V., Jeschke,, G., van Bokhoven,, J. A., & Vogel,, F. (2014). In situ observation of radicals and molecular products during lignin pyrolysis. ChemSusChem, 7(7), 2022–2029. https://doi.org/10.1002/cssc.201400079
Bahrle,, C., Custodis,, V., Jeschke,, G., van Bokhoven,, J. A., & Vogel,, F. (2016). The influence of zeolites on radical formation during lignin pyrolysis. ChemSusChem, 9(17), 2397–2403. https://doi.org/10.1002/cssc.201600582
Bai,, X., & Brown,, R. C. (2014). Modeling the physiochemistry of levoglucosan during cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 105, 363–368. https://doi.org/10.1016/j.jaap.2013.11.026
Bai,, X., Kim,, K. H., Brown,, R. C., Dalluge,, E., Hutchinson,, C., Lee,, Y. J., & Dalluge,, D. (2014). Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel, 128, 170–179. https://doi.org/10.1016/j.fuel.2014.03.013
Banyasz,, J. L., Li,, S., Lyons‐Hart,, J., & Shafer,, K. H. (2001). Gas evolution and the mechanism of cellulose pyrolysis. Fuel, 80(12), 1757–1763.
Basile,, L., Tugnoli,, A., Stramigioli,, C., & Cozzani,, V. (2016). Thermal effects during biomass pyrolysis. Thermochimica Acta, 636, 63–70. https://doi.org/10.1016/j.tca.2016.05.002
Bennadji,, H., Smith,, K., Shabangu,, S., & Fisher,, E. M. (2013). Low‐temperature pyrolysis of woody biomass in the thermally thick regime. Energy %26 Fuels, 27(3), 1453–1459. https://doi.org/10.1021/ef400079a
Bentivenga,, G., Bonini,, C., D`Auria,, M., & De Bona,, A. (2003). Degradation of steam‐exploded lignin from beech by using fenton`s reagent. Biomass and Bioenergy, 24(3), 233–238.
Biagini,, E., Fantozzi,, C., & Tognotti,, L. (2004). Characterization of devolatilization of secondary fuels in different conditions. Combustion Science and Technology, 176(5‐6), 685–703.
Blondeau,, J., & Jeanmart,, H. (2012). Biomass pyrolysis at high temperatures: Prediction of gaseous species yields from an anisotropic particle. Biomass and Bioenergy, 41, 107–121. https://doi.org/10.1016/j.biombioe.2012.02.016
Bradbury,, A. G. W., Sakai,, Y., & Shafizadeh,, F. (1979). A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science, 23(11), 3271–3280.
Branca,, C., Di Blasi,, C., Mango,, C., & Hrablay,, I. (2013). Products and kinetics of glucomannan pyrolysis. Industrial %26 Engineering Chemistry Research, 52(14), 5030–5039. https://doi.org/10.1021/ie400155x
Brewer,, C. E., Schmidt‐Rohr,, K., Satrio,, J. A., & Brown,, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress %26 Sustainable Energy, 28(3), 386–396. https://doi.org/10.1002/ep.10378
Bridgwater,, A. V. (1999). Principles and practice of biomass fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 51, 19.
Bridgwater,, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Bridgwater,, A. V., Meier,, D., & Radlein,, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30, 14.
Bridgwater,, A. V., & Peacocke,, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73.
Brink,, D. L., & Massoudi,, M. S. (1978). A flow reactor technique for the study of wood pyrolysis. I. Experimental. Journal of Fire and Flammability, 9, 176–188.
Britt,, P. F., Buchanan, III, A. C., Evans,, R. J., Looker,, M., & Nimlos,, M. R. (2002). Investigation of the gas‐phase pyrolysis of lignin model compounds by molecular beam mass spectrometry. Fuel Chemistry Division Preprints, 47, 395–397.
Britt,, P. F., Buchanan,, A. C., Cooney,, M. J., & Martineau,, D. R. (2000). Flash vacuum pyrolysis of methoxy‐substituted lignin model compounds. The Journal of Organic Chemistry, 65(5), 1376–1389. https://doi.org/10.1021/jo991479k
Britt,, P. F., Buchanan,, A. C., & Malcolm,, E. A. (2000). Impact of restricted mass transport on pyrolysis pathways for aryl ether containing lignin model compounds. Energy %26 Fuels, 14(6), 1314–1322. https://doi.org/10.1021/ef000160w
Broido,, A., & Nelson,, M. A. (1975). Char yield on pyrolysis of cellulose. Combustion and Flame, 24, 263–268.
Bryden,, K. M., Ragland,, K. W., & Rutland,, C. J. (2002). Modeling thermally thick pyrolysis of wood. Biomass and Bioenergy, 22(1), 41–53.
Buckingham,, G. T., Porterfield,, J. P., Kostko,, O., Troy,, T. P., Ahmed,, M., Robichaud,, D. J., … Ellison,, G. B. (2016). The thermal decomposition of the benzyl radical in a heated micro‐reactor. Ii. Pyrolysis of the tropyl radical. The Journal of Chemical Physics, 145(1), 014305. https://doi.org/10.1063/1.4954895
Burnham,, A. K., Zhou,, X., & Broadbelt,, L. J. (2015). Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy %26 Fuels, 29(5), 2906–2918. https://doi.org/10.1021/acs.energyfuels.5b00350
Butler,, E., Devlin,, G., Meier,, D., & McDonnell,, K. (2011). A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 15(8), 4171–4186. https://doi.org/10.1016/j.rser.2011.07.035
Cai,, J., Xu,, D., Dong,, Z., Yu,, X., Yang,, Y., Banks,, S. W., & Bridgwater,, A. V. (2018). Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, 82, 2705–2715. https://doi.org/10.1016/j.rser.2017.09.113
Carpenter,, D., Westover,, T. L., Czernik,, S., & Jablonski,, W. (2014). Biomass feedstocks for renewable fuel production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio‐oils and vapors. Green Chemistry, 16(2), 384–406. https://doi.org/10.1039/c3gc41631c
Carrier,, M., Joubert,, J. E., Danje,, S., Hugo,, T., Gorgens,, J., & Knoetze,, J. H. (2013). Impact of the lignocellulosic material on fast pyrolysis yields and product quality. Bioresource Technology, 150, 129–138. https://doi.org/10.1016/j.biortech.2013.09.134
Chen,, L., Dupont,, C., Salvador,, S., Grateau,, M., Boissonnet,, G., & Schweich,, D. (2013). Experimental study on fast pyrolysis of free‐falling millimetric biomass particles between 800°C and 1000°C. Fuel, 106, 61–66. https://doi.org/10.1016/j.fuel.2012.11.058
Chen,, P. (1994). Unimolecular and bimolecular reaction dynamics. New York: John Wiley %26 Sons.
Choi,, Y. S., Lee,, K.‐H., Zhang,, J., Brown,, R. C., & Shanks,, B. H. (2015). Manipulation of chemical species in bio‐oil using in situ catalytic fast pyrolysis in both a bench‐scale fluidized bed pyrolyzer and micropyrolyzer. Biomass and Bioenergy, 81, 256–264. https://doi.org/10.1016/j.biombioe.2015.07.017
Choi,, Y. S., Singh,, R., Zhang,, J., Balasubramanian,, G., Sturgeon,, M. R., Katahira,, R., … Shanks,, B. H. (2016). Pyrolysis reaction networks for lignin model compounds: Unraveling thermal deconstruction of β‐o‐4 and α‐o‐4 compounds. Green Chemistry, 18(6), 1762–1773. https://doi.org/10.1039/c5gc02268a
Chu,, S., Subrahmanyam,, A. V., & Huber,, G. W. (2013). The pyrolysis chemistry of a β‐o‐4 type oligomeric lignin model compound. Green Chemistry, 15(1), 125–136. https://doi.org/10.1039/c2gc36332a
Ciesielski,, P. N., Crowley,, M. F., Nimlos,, M. R., Sanders,, A. W., Wiggins,, G. M., Robichaud,, D., … Foust,, T. D. (2015). Biomass particle models with realistic morphology and resolved microstructure for simulations of intraparticle transport phenomena. Energy %26 Fuels, 29(1), 242–254. https://doi.org/10.1021/ef502204v
Ciesielski,, P. N., Pecha,, M. B., Bharadwaj,, V. S., Mukarakate,, C., Leong,, G. J., Kappes,, B., … Nimlos,, M. R. (2018). Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives. WIREs: Energy and Environment, 7(4), e297.
Constant,, S., Wienk,, H. L. J., Frissen,, A. E., Peinder,, P., de Boelens,, R., van Es,, D. S., … Bruijnincx,, P. C. A. (2016). New insights into the structure and composition of technical lignins: A comparative characterisation study. Green Chemistry, 18(9), 2651–2665. https://doi.org/10.1039/c5gc03043a
Cooley,, S., Jr,, A., & Michael,, J. (1988). Kinetics of cellulose pyrolysis in the presence of nitric oxide. Journal of Analytical and Applied Pyrolysis, 14(2‐3), 149–161.
Corbetta,, M., Frassoldati,, A., Bennadji,, H., Smith,, K., Serapiglia,, M. J., Gauthier,, G., … Fisher,, E. M. (2014). Pyrolysis of centimeter‐scale woody biomass particles: Kinetic modeling and experimental validation. Energy %26 Fuels, 28(6), 3884–3898. https://doi.org/10.1021/ef500525v
Custodis,, V. B., Hemberger,, P., Ma,, Z., & van Bokhoven,, J. A. (2014). Mechanism of fast pyrolysis of lignin: Studying model compounds. The Journal of Physical Chemistry. B, 118(29), 8524–8531. https://doi.org/10.1021/jp5036579
Dauenhauer,, P. J., Colby,, J. L., Balonek,, C. M., Suszynski,, W. J., & Schmidt,, L. D. (2009). Reactive boiling of cellulose for integrated catalysis through an intermediate liquid. Green Chemistry, 11(10), 1555–1561. https://doi.org/10.1039/B915068B
Dayton,, D. C., Hlebak,, J., Carpenter,, J. R., Wang,, K., Mante,, O. D., & Peters,, J. E. (2016). Biomass hydropyrolysis in a fluidized bed reactor. Energy %26 Fuels, 30(6), 4879–4887. https://doi.org/10.1021/acs.energyfuels.6b00373
Debiagi,, P. E. A., Pecchi,, C., Gentile,, G., Frassoldati,, A., Cuoci,, A., Faravelli,, T., & Ranzi,, E. (2015). Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy %26 Fuels, 29(10), 6544–6555.
Demirbas,, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33(1), 1–18. https://doi.org/10.1016/j.pecs.2006.06.001
Demirbas,, A. (2011). Competitive liquid biofuels from biomass. Applied Energy, 88(1), 17–28. https://doi.org/10.1016/j.apenergy.2010.07.016
Di Blasi,, C. (1996). Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Industrial %26 Engineering Chemistry Research, 35(1), 37–46.
Di Blasi,, C., & Branca,, C. (2001). Kinetics of primary product formation from wood pyrolysis. Industrial %26 Engineering Chemistry Research, 40(23), 5547–5556.
Di Blasi,, C., Branca,, C., Masotta,, F., & De Biase,, E. (2013). Experimental analysis of reaction heat effects during beech wood pyrolysis. Energy %26 Fuels, 27(5), 2665–2674. https://doi.org/10.1021/ef4001709
Di Blasi,, C., Hernandez,, E. G., & Santoro,, A. (2000). Radiative pyrolysis of single moist wood particles. Industrial %26 Engineering Chemistry Research, 39(4), 873–882.
Di Blasi,, C., Signorelli, G., Di Russo, C., & Rea, G. (1999). Product distribution from pyrolysis of wood and agricultural residues. Industrial %26 Engineering Chemistry Research, 38(6), 2216–2224.
Dirion,, J.‐L., Reverte,, C., & Cabassud,, M. (2008). Kinetic parameter estimation from tga: Optimal design of tga experiments. Chemical Engineering Research and Design, 86(6), 618–625. https://doi.org/10.1016/j.cherd.2008.02.001
Djokic,, M. R., Dijkmans,, T., Yildiz,, G., Prins,, W., & Van Geem,, K. M. (2012). Quantitative analysis of crude and stabilized bio‐oils by comprehensive two‐dimensional gas‐chromatography. Journal of Chromatography. A, 1257, 131–140. https://doi.org/10.1016/j.chroma.2012.07.035
Dollimore,, D., Evans,, T. A., Lee,, Y. F., & Wilburn,, F. W. (1992). Correlation between the shape of a tg/dtg curve and the form of the kinetic mechanism which is applying. Thermochimica Acta, 198(2), 249–257.
Dorrestijn,, E., Laarhoven,, L. J. J., Arends,, I. W. C. E., & Mulder,, P. (2000). The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and Applied Pyrolysis, 54(1), 153–192.
Dufour,, A., Masson,, E., Girods,, P., Rogaume,, Y., & Zoulalian,, A. (2011). Evolution of aromatic tar composition in relation to methane and ethylene from biomass pyrolysis‐gasification. Energy %26 Fuels, 25(9), 4182–4189. https://doi.org/10.1021/ef200846g
Dupont,, C., Chiriac,, R., Gauthier,, G., & Toche,, F. (2014). Heat capacity measurements of various biomass types and pyrolysis residues. Fuel, 115, 644–651.
Faravelli,, T., Frassoldati,, A., Migliavacca,, G., & Ranzi,, E. (2010). Detailed kinetic modeling of the thermal degradation of lignins. Biomass and Bioenergy, 34(3), 290–301. https://doi.org/10.1016/j.biombioe.2009.10.018
Font,, R., Marcilla,, A., Verdu,, E., & Devesa,, J. (1990). Kinetics of the pyrolysis of almond shells and almond shells impregnated with cobalt dichloride in a fluidized bed reactor and in a pyroprobe 100. Industrial %26 Engineering Chemistry Research, 29(9), 1846–1855.
Funke,, A., Tomasi Morgano,, M., Dahmen,, N., & Leibold,, H. (2017). Experimental comparison of two bench scale units for fast and intermediate pyrolysis. Journal of Analytical and Applied Pyrolysis, 124, 504–514. https://doi.org/10.1016/j.jaap.2016.12.033
Furutani,, Y., Dohara,, Y., Kudo,, S., Hayashi,, J. I., & Norinaga,, K. (2018). Theoretical study on elementary reaction steps in thermal decomposition processes of syringol‐type monolignol compounds. The Journal of Physical Chemistry. A, 122(3), 822–831. https://doi.org/10.1021/acs.jpca.7b09450
Gai,, C., Dong,, Y., Lv,, Z., Zhang,, Z., Liang,, J., & Liu,, Y. (2015). Pyrolysis behavior and kinetic study of phenol as tar model compound in micro fluidized bed reactor. International Journal of Hydrogen Energy, 40(25), 7956–7964. https://doi.org/10.1016/j.ijhydene.2015.04.098
Gentile,, G., Cuoci,, A., Frassoldati,, A., Faravelli,, T., & Ranzi,, E. (2015). A comprehensive cfd model for the biomass pyrolysis. Chemical Engineering Transactions, 43.
Gentile,, G., Debiagi,, P. E. A., Cuoci,, A., Frassoldati,, A., Ranzi,, E., & Faravelli,, T. (2017). A computational framework for the pyrolysis of anisotropic biomass particles. Chemical Engineering Journal, 321, 458–473. https://doi.org/10.1016/j.cej.2017.03.113
Golova,, O.`g. P. (1975). Chemical effects of heat on cellulose. Russian Chemical Reviews, 44(8), 687.
Gómez,, N., Banks,, S. W., Nowakowski,, D. J., Rosas,, J. G., Cara,, J., Sánchez,, M. E., & Bridgwater,, A. V. (2018). Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio‐oil storage evaluation. Fuel Processing Technology, 172, 97–105. https://doi.org/10.1016/j.fuproc.2017.11.021
Gonzalez‐Quiroga,, A., Geem,, V., Kevin,, M., & Marin,, G. B. (2017). Towards first‐principles based kinetic modeling of biomass fast pyrolysis. Biomass Conversion and Biorefinery, 7(3), 305–317.
Goyal,, H. B., Seal,, D., & Saxena,, R. C. (2008). Bio‐fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 12(2), 504–517. https://doi.org/10.1016/j.rser.2006.07.014
Greenhalf,, C. E., Nowakowski,, D. J., Harms,, A. B., Titiloye,, J. O., & Bridgwater,, A. V. (2013). A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel, 108, 216–230. https://doi.org/10.1016/j.fuel.2013.01.075
Groenewold,, G. S., Johnson,, K. M., Fox,, S. C., Rae,, C., Zarzana,, C. A., Kersten,, B. R., … Emerson,, R. M. (2017). Pyrolysis two‐dimensional gc‐ms of miscanthus biomass: Quantitative measurement using an internal standard method. Energy %26 Fuels, 31(2), 1620–1630.
Grønli,, M., Antal,, M. J., & Várhegyi,, G. (1999). A round‐robin study of cellulose pyrolysis kinetics by thermogravimetry. Industrial %26 Engineering Chemistry Research, 38(6), 2238–2244.
Guo,, D., Wu,, S., Lyu,, G., & Guo,, H. (2017). Effect of molecular weight on the pyrolysis characteristics of alkali lignin. Fuel, 193, 45–53. https://doi.org/10.1016/j.fuel.2016.12.042
Guo,, F., Dong,, Y., Lv,, Z., Fan,, P., Yang,, S., & Dong,, L. (2015). Pyrolysis kinetics of biomass (herb residue) under isothermal condition in a micro fluidized bed. Energy Conversion and Management, 93, 367–376. https://doi.org/10.1016/j.enconman.2015.01.042
Guo,, M., Song,, W., & Buhain,, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712–725. https://doi.org/10.1016/j.rser.2014.10.013
Hankalin,, V., Ahonen,, T., & Raiko,, R. (2009). On thermal properties of a pyrolysing wood particle. Finnish‐Swedish Flame Days, 16.
Hansson,, K.‐M., Samuelsson,, J., Tullin,, C., & Åmand,, L.‐E. (2004). Formation of hnco, hcn, and nh3 from the pyrolysis of bark and nitrogen‐containing model compounds. Combustion and Flame, 137(3), 265–277. https://doi.org/10.1016/j.combustflame.2004.01.005
Hoekstra,, E., van Swaaij,, W. P. M., Kersten,, S. R. A., & Hogendoorn,, K. J. A. (2012). Fast pyrolysis in a novel wire‐mesh reactor: Design and initial results. Chemical Engineering Journal, 191, 45–58. https://doi.org/10.1016/j.cej.2012.01.117
Hosaka,, A., Watanabe,, C., Teramae,, N., & Ohtani,, H. (2014). Development of a new micro reaction sampler for pyrolysis‐gc/ms system facilitating on‐line analytical chemolysis of intractable condensation polymers. Journal of Analytical and Applied Pyrolysis, 106, 160–163. https://doi.org/10.1016/j.jaap.2014.01.014
Hosoya,, T., Kawamoto,, H., & Saka,, S. (2007). Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis, 80(1), 118–125. https://doi.org/10.1016/j.jaap.2007.01.006
Hosoya,, T., Nakao,, Y., Sato,, H., Kawamoto,, H., & Sakaki,, S. (2009). Thermal degradation of methyl beta‐d‐glucoside. A theoretical study of plausible reaction mechanisms. The Journal of Organic Chemistry, 74(17), 6891–6894. https://doi.org/10.1021/jo900457k
Huang,, J., Liu,, C., Wei,, S., Huang,, X., & Li,, H. (2010). Density functional theory studies on pyrolysis mechanism of β‐d‐glucopyranose. Journal of Molecular Structure: THEOCHEM, 958(1‐3), 64–70. https://doi.org/10.1016/j.theochem.2010.07.030
Huang,, J., Liu,, C., Tong,, H., Li,, W., & Wu,, D. (2012). Theoretical studies on pyrolysis mechanism of xylopyranose. Computational and Theoretical Chemistry, 1001, 44–50. https://doi.org/10.1016/j.comptc.2012.10.015
Jakab,, E., Faix,, O., & Till,, F. (1997). Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 40, 171–186.
Jalan,, R. K., & Srivastava,, V. K. (1999). Studies on pyrolysis of a single biomass cylindrical pellet—Kinetic and heat transfer effects. Energy Conversion and Management, 40(5), 467–494.
Jarvis,, M. W., Daily,, J. W., Carstensen,, H.‐H., Dean,, A. M., Sharma,, S., Dayton,, D. C., … Nimlos,, M. R. (2011). Direct detection of products from the pyrolysis of 2‐phenethyl phenyl ether. The Journal of Physical Chemistry A, 115(4), 10.
Jia,, L., Dufour,, A., Le Brech,, Y., Authier,, O., & Mauviel,, G. (2017). On‐line analysis of primary tars from biomass pyrolysis by single photoionization mass spectrometry: Experiments and detailed modelling. Chemical Engineering Journal, 313, 270–282. https://doi.org/10.1016/j.cej.2016.12.021
Kanaujia,, P. K., Sharma,, Y. K., Agrawal,, U. C., & Garg,, M. O. (2013). Analytical approaches to characterizing pyrolysis oil from biomass. TrAC Trends in Analytical Chemistry, 42, 125–136. https://doi.org/10.1016/j.trac.2012.09.009
Kawamoto,, H., Murayama,, M., & Saka,, S. (2003). Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: Polymerization into polysaccharide as a key reaction to carbonized product formation. Journal of Wood Science, 49(5), 469–473. https://doi.org/10.1007/s10086-002-0487-5
Kawamoto,, H., & Saka,, S. (2007). Role of side‐chain hydroxyl groups in pyrolytic reaction of phenolic β‐ether type of lignin dimer. Journal of Wood Chemistry and Technology, 27(2), 113–120. https://doi.org/10.1080/02773810701515119
Kersten,, S. R. A., Wang,, X., Prins,, W., & van Swaaij,, W. P. M. (2005). Biomass pyrolysis in a fluidized bed reactor. Part 1: Literature review and model simulations. Industrial %26 Engineering Chemistry Research, 44(23), 8773–8785. https://doi.org/10.1021/ie0504856
Khachatryan,, L., Asatryan,, R., McFerrin,, C., Adounkpe,, J., & Dellinger,, B. (2010). Radicals from the gas‐phase pyrolysis of catechol. 2. Comparison of the pyrolysis of catechol and hydroquinone. The Journal of Physical Chemistry A, 114(37), 10110–10116.
Khachatryan,, L., Xu,, M. X., Wu,, A. J., Pechagin,, M., & Asatryan,, R. (2016). Radicals and molecular products from the gas‐phase pyrolysis of lignin model compounds. Cinnamyl alcohol. Journal of Analytical and Applied Pyrolysis, 121, 75–83. https://doi.org/10.1016/j.jaap.2016.07.004
Kibet,, J., Khachatryan,, L., & Dellinger,, B. (2012). Molecular products and radicals from pyrolysis of lignin. Environmental Science %26 Technology, 46(23), 12994–13001. https://doi.org/10.1021/es302942c
Kim,, K. H., Bai,, X., & Brown,, R. C. (2014). Pyrolysis mechanisms of methoxy substituted α‐o‐4 lignin dimeric model compounds and detection of free radicals using electron paramagnetic resonance analysis. Journal of Analytical and Applied Pyrolysis, 110, 254–263. https://doi.org/10.1016/j.jaap.2014.09.008
Kim,, K. H., Bai,, X., Cady,, S., Gable,, P., & Brown,, R. C. (2015). Quantitative investigation of free radicals in bio‐oil and their potential role in condensed‐phase polymerization. ChemSusChem, 8(5), 894–900. https://doi.org/10.1002/cssc.201403275
Klein,, M. T., & Virk,, P. S. (1983). Model pathways in lignin thermolysis. 1. Phenethyl phenyl ether. Industrial and Engineering Chemistry Fundamentals, 22(1), 35–45. https://doi.org/10.1021/i100009a007
Koirala,, Y., Villano,, S. M., Carstensen,, H.‐H., & Dean,, A.M. (2013). Pyrolysis kinetics of anisole and other simple lignin model compounds. Paper presented at the 2013 AiChE Annual Meeting, San Francisco, CA.
Kotake,, T., Kawamoto,, H., & Saka,, S. (2014). Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin. Journal of Analytical and Applied Pyrolysis, 105, 309–316. https://doi.org/10.1016/j.jaap.2013.11.018
Kousoku,, A., Norinaga,, K., & Miura,, K. (2014). Extended detailed chemical kinetic model for benzene pyrolysis with new reaction pathways including oligomer formation. Industrial %26 Engineering Chemistry Research, 53(19), 7956–7964. https://doi.org/10.1021/ie4044218
Krumm,, C., Pfaendtner,, J., & Dauenhauer,, P. J. (2016). Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chemistry of Materials, 28(9), 3108–3114. https://doi.org/10.1021/acs.chemmater.6b00580
Kulkarni,, S. R., Vandewalle,, L. A., Gonzalez‐Quiroga,, A., Perreault,, P., Heynderickx,, G. J., Van Geem,, K. M., … Marin,, G. B. (2018). Computational fluid dynamics‐assisted process intensification study for biomass fast pyrolysis in a gas–solid vortex reactor. Energy %26 Fuels. https://doi.org/10.1021/acs.energyfuels.8b01008
Kuroda,, K.‐I., Inoue,, Y., & Sakai,, K. (1990). Analysis of lignin by pyrolysis‐gas chromatography. I. Effect of inorganic substances on guaiacol‐derivative yield from softwoods and their lignins. Journal of Analytical and Applied Pyrolysis, 18(1), 59–69.
Lédé,, J. (1994). Reaction temperature of solid particles undergoing an endothermal volatilization. Application to the fast pyrolysis of biomass. Biomass and Bioenergy, 7(1‐6), 49–60.
Lédé,, J., Blanchard,, F., & Boutin,, O. (2002). Radiant flash pyrolysis of cellulose pellets: Products and mechanisms involved in transient and steady state conditions. Fuel, 81(10), 1269–1279. https://doi.org/10.1016/S0016-2361(02)00039-X
Li,, Q., Song,, J., Peng,, S., Wang,, J. P., Qu,, G. Z., Sederoff,, R. R., & Chiang,, V. L. (2014). Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnology Journal, 12(9), 1174–1192. https://doi.org/10.1111/pbi.12273
Li,, W., Dang,, Q., Smith,, R., Brown,, R. C., & Wright,, M. (2017). Techno‐economic analysis of the stabilization of bio‐oil fractions for insertion into petroleum refineries. ACS Sustainable Chemistry %26 Engineering, 5(2), 1528–1537. https://doi.org/10.1021/acssuschemeng.6b02222
Liliedahl,, T., & Sjöström,, K. (1998). Heat transfer controlled pyrolysis kinetics of a biomass slab, rod or sphere. Biomass and Bioenergy, 15(6), 503–509.
Lin,, Y.‐C., Cho,, J., Tompsett,, G. A., Westmoreland,, P. R., & Huber,, G. W. (2009). Kinetics and mechanism of cellulose pyrolysis. The Journal of Physical Chemistry C, 113(46), 20097–20107.
Lou,, R., Wu,, S., & Lyu,, G. (2015). Quantified monophenols in the bio‐oil derived from lignin fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 111, 27–32. https://doi.org/10.1016/j.jaap.2014.12.022
Ma`ruf,, A., Pramudono,, B., & Aryanti,, N. (2017). Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. AIP Conference Proceedings, 1821, 020013. https://doi.org/10.1063/1.4978086
Maduskar,, S., Facas,, G. G., Papageorgiou,, C., Williams,, C. L., & Dauenhauer,, P. J. (2018). Five rules for measuring biomass pyrolysis rates: Pulse‐heated analysis of solid reaction kinetics of lignocellulosic biomass. ACS Sustainable Chemistry %26 Engineering, 6(1), 1387–1399. https://doi.org/10.1021/acssuschemeng.7b03785
Maduskar,, S., Maliekkal,, V., Neurock,, M., & Dauenhauer,, P. J. (2018). On the yield of levoglucosan from cellulose pyrolysis. ACS Sustainable Chemistry %26 Engineering, 6(5), 7017–7025. https://doi.org/10.1021/acssuschemeng.8b00853
Mani,, T., Murugan,, P., Abedi,, J., & Mahinpey,, N. (2010). Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chemical Engineering Research and Design, 88(8), 952–958. https://doi.org/10.1016/j.cherd.2010.02.008
Mante,, O. D., Amidon,, T. E., Stipanovic,, A., & Babu,, S. P. (2014). Integration of biomass pretreatment with fast pyrolysis: An evaluation of electron beam (eb) irradiation and hot‐water extraction (hwe). Journal of Analytical and Applied Pyrolysis, 110, 44–54. https://doi.org/10.1016/j.jaap.2014.08.004
Mason,, P. E., Darvell,, L. I., Jones,, J. M., & Williams,, A. (2016). Comparative study of the thermal conductivity of solid biomass fuels. Energy %26 Fuels, 30(3), 2158–2163. https://doi.org/10.1021/acs.energyfuels.5b02261
Mayes,, H. B., & Broadbelt,, L. J. (2012). Unraveling the reactions that unravel cellulose. The Journal of Physical Chemistry. A, 116(26), 7098–7106. https://doi.org/10.1021/jp300405x
Mayes,, H. B., Nolte,, M. W., Beckham,, G. T., Shanks,, B. H., & Broadbelt,, L. J. (2014). The alpha–bet(a) of glucose pyrolysis: Computational and experimental investigations of 5‐hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis. ACS Sustainable Chemistry %26 Engineering, 2(6), 1461–1473. https://doi.org/10.1021/sc500113m
Mayor,, J. R., & Williams,, A. (2010). Residence time influence on the fast pyrolysis of loblolly pine biomass. Journal of Energy Resources Technology, 132(4), 041801. https://doi.org/10.1115/1.4003004
Mehrabian,, R., Scharler,, R., & Obernberger,, I. (2012). Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of tga kinetic parameters in particle thermal conversion modelling. Fuel, 93, 567–575. https://doi.org/10.1016/j.fuel.2011.09.054
Meier,, D., van de Beld,, B., Bridgwater,, A. V., Elliott,, D. C., Oasmaa,, A., & Preto,, F. (2013). State‐of‐the‐art of fast pyrolysis in iea bioenergy member countries. Renewable and Sustainable Energy Reviews, 20, 619–641. https://doi.org/10.1016/j.rser.2012.11.061
Mellin,, P., Yu,, X., Yang,, W., & Blasiak,, W. (2015). Influence of reaction atmosphere (h2o, n2, h2, co2, co) on fluidized‐bed fast pyrolysis of biomass using detailed tar vapor chemistry in computational fluid dynamics. Industrial %26 Engineering Chemistry Research, 54(33), 8344–8355. https://doi.org/10.1021/acs.iecr.5b02164
Mettler,, M. S., Mushrif,, S. H., Paulsen,, A. D., Javadekar,, A. D., Vlachos,, D. G., & Dauenhauer,, P. J. (2012). Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates. Energy %26 Environmental Science, 5(1), 5414–5424. https://doi.org/10.1039/c1ee02743c
Mettler,, M. S., Paulsen,, A. D., Vlachos,, D. G., & Dauenhauer,, P. J. (2012). Pyrolytic conversion of cellulose to fuels: Levoglucosan deoxygenation via elimination and cyclization within molten biomass. Energy %26 Environmental Science, 5(7), 7864. https://doi.org/10.1039/c2ee21305b
Mettler,, M. S., Vlachos,, D. G., & Dauenhauer,, P. J. (2012). Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy %26 Environmental Science, 5(7), 7797. https://doi.org/10.1039/c2ee21679e
Michailof,, C. M., Kalogiannis,, K. G., Sfetsas,, T., Patiaka,, D. T., & Lappas,, A. A. (2016). Advanced analytical techniques for bio‐oil characterization. WIREs: Energy and Environment, 5(6), 614–639. https://doi.org/10.1002/wene.208
Miller,, R. S., & Bellan,, J. (2010). A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combustion Science and Technology, 126(1‐6), 97–137. https://doi.org/10.1080/00102209708935670
Milosavljevic,, I., & Suuberg,, E. M. (1995). Cellulose thermal decomposition kinetics: Global mass loss kinetics. Industrial %26 Engineering Chemistry Research, 34(4), 1081–1091.
Mohan,, D., Pittman,, C. U., & Steele,, P. H. (2006). Pyrolysis of wood/biomass for bio‐oil: A critical review. Energy %26 Fuels, 20(3), 848–889.
Mohan,, S. V., Nikhil,, G. N., Chiranjeevi,, P., Reddy,, C. N., Rohit,, M. V., Kumar,, A. N., & Sarkar,, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12.
Mok,, W. S. L., Jr,, A., & Michael,, J. (1983). Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis. Thermochimica Acta, 68(2‐3), 165–186.
Mukarakate,, C., Scheer,, A. M., Robichaud,, D. J., Jarvis,, M. W., David,, D. E., Ellison,, G. B., … Davis,, M. F. (2011). Laser ablation with resonance‐enhanced multiphoton ionization time‐of‐flight mass spectrometry for determining aromatic lignin volatilization products from biomass. The Review of Scientific Instruments, 82(3), 033104. https://doi.org/10.1063/1.3563704
Murillo,, J. D., Biernacki,, J. J., Northrup,, S., & Mohammad,, A. S. (2017). Biomass pyrolysis kinetics: A review of molecular‐scale modeling contributions. Brazilian Journal of Chemical Engineering, 34(1), 1–18.
Narayan,, R., & Antal,, M. J. (1996). Thermal lag, fusion, and the compensation effect during biomass pyrolysis. Industrial %26 Engineering Chemistry Research, 35(5), 1711–1721.
Negahdar,, L., Gonzalez‐Quiroga,, A., Otyuskaya,, D., Toraman,, H. E., Liu,, L., Jastrzebski,, J. T., … Weckhuysen,, B. M. (2016). Characterization and comparison of fast pyrolysis bio‐oils from pinewood, rapeseed cake, and wheat straw using 13c nmr and comprehensive gc x gc. ACS Sustainable Chemistry %26 Engineering, 4(9), 4974–4985. https://doi.org/10.1021/acssuschemeng.6b01329
Neupane,, S., Adhikari,, S., Wang,, Z., Ragauskas,, A. J., & Pu,, Y. (2015). Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis. Green Chemistry, 17(4), 2406–2417.
Norinaga,, K., Shoji,, T., Kudo,, S., & Hayashi,, J.‐i. (2013). Detailed chemical kinetic modelling of vapour‐phase cracking of multi‐component molecular mixtures derived from the fast pyrolysis of cellulose. Fuel, 103, 141–150. https://doi.org/10.1016/j.fuel.2011.07.045
Nowakowska,, M., Herbinet,, O., Dufour,, A., & Glaude,, P.‐A. (2014). Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification. Combustion and Flame, 161(6), 1474–1488. https://doi.org/10.1016/j.combustflame.2013.11.024
Nowakowski,, D. J., Bridgwater,, A. V., Elliott,, D. C., Meier,, D., & de Wild,, P. (2010). Lignin fast pyrolysis: Results from an international collaboration. Journal of Analytical and Applied Pyrolysis, 88(1), 53–72. https://doi.org/10.1016/j.jaap.2010.02.009
Ojha,, D. K., Viju,, D., & Vinu,, R. (2017). Fast pyrolysis kinetics of alkali lignin: Evaluation of apparent rate parameters and product time evolution. Bioresource Technology, 241, 142–151. https://doi.org/10.1016/j.biortech.2017.05.084
Paine,, J. B., Pithawalla,, Y. B., & Naworal,, J. D. (2008a). Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 2. The pyrolysis of d‐glucose: General disconnective analysis and the formation of c1 and c2 carbonyl compounds by electrocyclic fragmentation mechanisms. Journal of Analytical and Applied Pyrolysis, 82(1), 10–41. https://doi.org/10.1016/j.jaap.2008.01.002
Paine,, J. B., Pithawalla,, Y. B., & Naworal,, J. D. (2008b). Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3. The pyrolysis of d‐glucose: Formation of c3 and c4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms. Journal of Analytical and Applied Pyrolysis, 82(1), 42–69. https://doi.org/10.1016/j.jaap.2007.12.005
Paine,, J. B., Pithawalla,, Y. B., & Naworal,, J. D. (2008c). Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 4. The pyrolysis of d‐glucose: The formation of furans. Journal of Analytical and Applied Pyrolysis, 83(1), 37–63. https://doi.org/10.1016/j.jaap.2008.05.008
Paine,, J. B., Pithawalla,, Y. B., Naworal,, J. D., & Thomas,, C. E. (2007). Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 1: The pyrolysis of glycerin: Discovery of competing fragmentation mechanisms affording acetaldehyde and formaldehyde and the implications for carbohydrate pyrolysis. Journal of Analytical and Applied Pyrolysis, 80(2), 297–311. https://doi.org/10.1016/j.jaap.2007.03.007
Pandey,, M. P., & Kim,, C. S. (2011). Lignin depolymerization and conversion: A review of thermochemical methods. Chemical Engineering %26 Technology, 34(1), 29–41. https://doi.org/10.1002/ceat.201000270
Papadikis,, K., Gu,, S., & Bridgwater,, A. V. (2009). Cfd modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part b: Heat, momentum and mass transport in bubbling fluidised beds. Chemical Engineering Science, 64(5), 1036–1045. https://doi.org/10.1016/j.ces.2008.11.007
Park,, W. C., Atreya,, A., & Baum,, H. R. (2010). Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combustion and Flame, 157(3), 481–494. https://doi.org/10.1016/j.combustflame.2009.10.006
Patwardhan,, P. R., Brown,, R. C., & Shanks,, B. H. (2011a). Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem, 4(5), 636–643. https://doi.org/10.1002/cssc.201000425
Patwardhan,, P. R., Brown,, R. C., & Shanks,, B. H. (2011b). Understanding the fast pyrolysis of lignin. ChemSusChem, 4(11), 1629–1636. https://doi.org/10.1002/cssc.201100133
Patwardhan,, P. R., Dalluge,, D. L., Shanks,, B. H., & Brown,, R. C. (2011). Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresource Technology, 102(8), 5265–5269. https://doi.org/10.1016/j.biortech.2011.02.018
Patwardhan,, P. R., Satrio,, J. A., Brown,, R. C., & Shanks,, B. H. (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource Technology, 101(12), 4646–4655. https://doi.org/10.1016/j.biortech.2010.01.112
Patwardhan,, P. R., Satrio,, J. A., Brown,, R. C., & Shanks,, B. H. (2009). Product distribution from fast pyrolysis of glucose‐based carbohydrates. Journal of Analytical and Applied Pyrolysis, 86(2), 323–330. https://doi.org/10.1016/j.jaap.2009.08.007
Paulsen,, A. D., Mettler,, M. S., & Dauenhauer,, P. J. (2013). The role of sample dimension and temperature in cellulose pyrolysis. Energy %26 Fuels, 27(4), 2126–2134. https://doi.org/10.1021/ef302117j
Peng,, Y., & Wu,, S. (2010). The structural and thermal characteristics of wheat straw hemicellulose. Journal of Analytical and Applied Pyrolysis, 88(2), 134–139. https://doi.org/10.1016/j.jaap.2010.03.006
Piskorz,, J., Majerski,, P., Radlein,, D., Vladars‐Usas,, A., & Scott,, D. S. (2000). Flash pyrolysis of cellulose for production of anhydro‐oligomers. Journal of Analytical and Applied Pyrolysis, 2(56), 145–166.
Piskorz,, J., Radlein,, D., & Scott,, D. S. (1986). On the mechanism of the rapid pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 9(2), 121–137.
Ponder,, G. R., Qiu,, H.‐X., & Richards,, G. N. (1990). Pyrolytic conversion of biomass to anhydrosugars. Applied Biochemistry and Biotechnology, 24(1), 41.
Ponder,, G. R., & Richards,, G. N. (1991). Thermal synthesis and pyrolysis of a xylan. Carbohydrate Research, 218, 143–155.
Ponder,, G. R., Richards,, G. N., & Stevenson,, T. T. (1992). Influence of linkage position and orientation in pyrolysis of polysaccharides: A study of several glucans. Journal of Analytical and Applied Pyrolysis, 22(3), 217–229.
Pouwels,, A. D., Eijkel,, G. B., & Boon,, J. J. (1989). Curie‐point pyrolysis‐capillary gas chromatography‐high‐resolution mass spectrometry of microcrystalline cellulose. Journal of Analytical and Applied Pyrolysis, 14(4), 237–280.
Pozzobon,, V., Salvador,, S., Bézian,, J. J., El‐Hafi,, M., Le Maoult,, Y., & Flamant,, G. (2014). Radiative pyrolysis of wet wood under intermediate heat flux: Experiments and modelling. Fuel Processing Technology, 128, 319–330. https://doi.org/10.1016/j.fuproc.2014.07.007
Proano‐Aviles,, J., Lindstrom,, J. K., Johnston,, P. A., & Brown,, R. C. (2017). Heat and mass transfer effects in a furnace‐based micropyrolyzer. Energy Technology, 5(1), 189–195. https://doi.org/10.1002/ente.201600279
Pyle,, D. L., & Zaror,, C. A. (1984). Heat transfer and kinetics in the low temperature pyrolysis of solids. Chemical Engineering Science, 39(1), 147–158.
Qi,, S. C., Zhang,, L., Kudo,, S., Norinaga,, K., & Hayashi,, J. I. (2017). Theoretical study on hydrogenolytic cleavage of intermonomer linkages in lignin. The Journal of Physical Chemistry. A, 121(15), 2868–2877. https://doi.org/10.1021/acs.jpca.7b00602
Ragaert,, K., Delva,, L., & Van Geem,, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58.
Ranzi,, E., Cuoci,, A., Faravelli,, T., Frassoldati,, A., Migliavacca,, G., Pierucci,, S., & Sommariva,, S. (2008). Chemical kinetics of biomass pyrolysis. Energy %26 Fuels, 22(6), 4292–4300. https://doi.org/10.1021/ef800551t
Ranzi,, E., Frassoldati,, A., Grana,, R., Cuoci,, A., Faravelli,, T., Kelley,, A. P., & Law,, C. K. (2012). Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science, 38(4), 468–501. https://doi.org/10.1016/j.pecs.2012.03.004
Ranzi,, E., Debiagi,, P. E. A., & Frassoldati,, A. (2017a). Mathematical modeling of fast biomass pyrolysis and bio‐oil formation. Note i: Kinetic mechanism of biomass pyrolysis. ACS Sustainable Chemistry %26 Engineering, 5(4), 2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096
Ranzi,, E., Debiagi,, P. E. A., & Frassoldati,, A. (2017b). Mathematical modeling of fast biomass pyrolysis and bio‐oil formation. Note ii: Secondary gas‐phase reactions and bio‐oil formation. ACS Sustainable Chemistry %26 Engineering, 5(4), 2882–2896. https://doi.org/10.1021/acssuschemeng.6b03098
Ren,, Q., & Zhao,, C. (2015). Evolution of fuel‐n in gas phase during biomass pyrolysis. Renewable and Sustainable Energy Reviews, 50, 408–418. https://doi.org/10.1016/j.rser.2015.05.043
Ren,, Q., Zhao,, C., Chen,, X., Duan,, L., Li,, Y., & Ma,, C. (2011). Nox and n2o precursors (nh3 and hcn) from biomass pyrolysis: Co‐pyrolysis of amino acids and cellulose, hemicellulose and lignin. Proceedings of the Combustion Institute, 33(2), 1715–1722.
Ren,, Q., Zhao,, C., Wu,, X., Liang,, C., Chen,, X., Shen,, J., … Wang,, Z. (2009). Effect of mineral matter on the formation of nox precursors during biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 85(1‐2), 447–453.
Robichaud,, D. J., Nimlos,, M. R., & Ellison,, G. B. (2016). Pyrolysis mechanisms of lignin model compounds using a heated micro‐reactor. In M. Schlaf, & Z. C. Zhang, (Eds.), Reaction pathways and mechanisms in thermocatalytic biomass conversion ii (pp. 145–171). Singapore: Springer.
Ronsse,, F., Dalluge,, D., Prins,, W., & Brown,, R. C. (2012). Optimization of platinum filament micropyrolyzer for studying primary decomposition in cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 95, 247–256. https://doi.org/10.1016/j.jaap.2012.02.015
Sannigrahi,, P., Ragauskas,, A. J., & Tuskan,, G. A. (2010). Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioproducts and Biorefining, 4(2), 209–226. https://doi.org/10.1002/bbb.206
Sarrut,, M., Corgier,, A., Cretier,, G., Le Masle,, A., Dubant,, S., & Heinisch,, S. (2015). Potential and limitations of on‐line comprehensive reversed phase liquid chromatographyxsupercritical fluid chromatography for the separation of neutral compounds: An approach to separate an aqueous extract of bio‐oil. Journal of Chromatography. A, 1402, 124–133. https://doi.org/10.1016/j.chroma.2015.05.005
Scheer,, A. M., Mukarakate,, C., Robichaud,, D. J., Nimlos,, M. R., Carstensen,, H. H., & Ellison,, G. B. (2012). Unimolecular thermal decomposition of phenol and d5‐phenol: Direct observation of cyclopentadiene formation via cyclohexadienone. The Journal of Chemical Physics, 136(4), 044309. https://doi.org/10.1063/1.3675902
Scheer,, A. M., Mukarakate,, C., Robichaud,, D. J., Nimlos,, M. R., & Ellison,, G. B. (2011). Thermal decomposition mechanisms of the methoxyphenols: Formation of phenol, cyclopentadienone, vinylacetylene, and acetylene. Journal of Physical Chemistry A, 115(46), 13381–13389. https://doi.org/10.1021/jp2068073
Scheer,, A. M., Mukarakate,, C., Robichaud,, D. J., Ellison,, G. B., & Nimlos,, M. R. (2010). Radical chemistry in the thermal decomposition of anisole and deuterated anisoles: An investigation of aromatic growth. The Journal of Physical Chemistry A, 114(34), 9043–9056. https://doi.org/10.1021/jp102046p
Septien,, S., Valin,, S., Dupont,, C., Peyrot,, M., & Salvador,, S. (2012). Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000–1400°c). Fuel, 97, 202–210. https://doi.org/10.1016/j.fuel.2012.01.049
Seshadri,, V., & Westmoreland,, P. R. (2012). Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. The Journal of Physical Chemistry. A, 116(49), 11997–12013. https://doi.org/10.1021/jp3085099
Shafizadeh,, F., & Fu,, Y. L. (1973). Pyrolysis of cellulose. Carbohydrate Research, 29(1), 113–122.
Sharma,, A., Pareek,, V., & Zhang,, D. (2015). Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews, 50, 1081–1096. https://doi.org/10.1016/j.rser.2015.04.193
Shen,, D. K., & Gu,, S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology, 100(24), 6496–6504. https://doi.org/10.1016/j.biortech.2009.06.095
Shen,, D. K., Gu,, S., & Bridgwater,, A. V. (2010). Study on the pyrolytic behaviour of xylan‐based hemicellulose using tg–ftir and py–gc–ftir. Journal of Analytical and Applied Pyrolysis, 87(2), 199–206. https://doi.org/10.1016/j.jaap.2009.12.001
Shen,, D., Jin,, W., Hu,, J., Xiao,, R., & Luo,, K. (2015). An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued‐added chemicals: Structures, pathways and interactions. Renewable and Sustainable Energy Reviews, 51, 761–774. https://doi.org/10.1016/j.rser.2015.06.054
Shen,, D., Xiao,, R., Gu,, S., & Luo,, K. (2011). The pyrolytic behavior of cellulose in lignocellulosic biomass: A review. RSC Advances, 1(9), 1641. https://doi.org/10.1039/c1ra00534k
Shen,, Y., Jarboe,, L., Brown,, R., & Wen,, Z. (2015). A thermochemical‐biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnology Advances, 33(8), 1799–1813. https://doi.org/10.1016/j.biotechadv.2015.10.006
Simmons,, M. B., & Klein,, M. T. (1985). Free‐radical and concerted reaction pathways in dibenzyl ether thermolysis. Industrial and Engineering Chemistry Fundamentals, 24(1), 55–60. https://doi.org/10.1021/i100017a010
Simone,, M., Biagini,, E., Galletti,, C., & Tognotti,, L. (2009). Evaluation of global biomass devolatilization kinetics in a drop tube reactor with cfd aided experiments. Fuel, 88(10), 1818–1827. https://doi.org/10.1016/j.fuel.2009.04.032
Slopiecka,, K., Bartocci,, P., & Fantozzi,, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97, 491–497. https://doi.org/10.1016/j.apenergy.2011.12.056
SriBala,, G., Chennuru,, R., Mahapatra,, S., & Vinu,, R. (2016). Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose, 23(3), 1725–1740. https://doi.org/10.1007/s10570-016-0893-2
SriBala,, G., & Vinu,, R. (2014). Unified kinetic model for cellulose deconstruction via acid hydrolysis. Industrial %26 Engineering Chemistry Research, 53(21), 8714–8725. https://doi.org/10.1021/ie5007905
Suriapparao,, D. V., & Vinu,, R. (2018). Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste and Biomass Valorization, 9(3), 465–477. https://doi.org/10.1007/s12649-016-9815-7
Teixeira,, A. R., Mooney,, K. G., Kruger,, J. S., Williams,, C. L., Suszynski,, W. J., Schmidt,, L. D., … Dauenhauer,, P. J. (2011). Aerosol generation by reactive boiling ejection of molten cellulose. Energy %26 Environmental Science, 4(10), 4306. https://doi.org/10.1039/c1ee01876k
Thangalazhy‐Gopakumar,, S., Adhikari,, S., Gupta,, R. B., & Fernando,, S. D. (2011). Influence of pyrolysis operating conditions on bio‐oil components: A microscale study in a pyroprobe. Energy %26 Fuels, 25(3), 1191–1199. https://doi.org/10.1021/ef101032s
Thurner,, F., & Mann,, U. (1981). Kinetic investigation of wood pyrolysis. Industrial and Engineering Chemistry Process Design and Development, 20(3), 482–488.
Toraman,, H. E., Dijkmans,, T., Djokic,, M. R., Van Geem,, K. M., & Marin,, G. B. (2014). Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two‐dimensional gas‐chromatography coupled to multiple detectors. Journal of Chromatography. A, 1359, 237–246. https://doi.org/10.1016/j.chroma.2014.07.017
Toraman,, H. E., Franz,, K., Ronsse,, F., Van Geem,, K. M., & Marin,, G. B. (2016). Quantitative analysis of nitrogen containing compounds in microalgae based bio‐oils using comprehensive two‐dimensional gas‐chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer. Journal of Chromatography. A, 1460, 135–146. https://doi.org/10.1016/j.chroma.2016.07.009
Toraman,, H. E., Vanholme,, R., Boren,, E., Vanwonterghem,, Y., Djokic,, M. R., Yildiz,, G., … Marin,, G. B. (2016). Potential of genetically engineered hybrid poplar for pyrolytic production of bio‐based phenolic compounds. Bioresource Technology, 207, 229–236. https://doi.org/10.1016/j.biortech.2016.02.022
Toraman,, H. E., Abrahamsson,, V., Vanholme,, R., Van Acker,, R., Ronsse,, F., Pilate,, G., … Marin,, G. B. (2018). Application of py‐gc/ms coupled with parafac2 and pls‐da to study fast pyrolysis of genetically engineered poplars. Journal of Analytical and Applied Pyrolysis, 129, 101–111. https://doi.org/10.1016/j.jaap.2017.11.022
Traore,, M., Kaal,, J., & Martinez Cortizas,, A. (2016). Application of ftir spectroscopy to the characterization of archeological wood. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 153, 63–70. https://doi.org/10.1016/j.saa.2015.07.108
Van de Velden,, M., Baeyens,, J., Brems,, A., Janssens,, B., & Dewil,, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.019
Vanholme,, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153(3), 895–905.
Vanholme,, R., Morreel,, K., Darrah,, C., Oyarce,, P., Grabber,, J. H., Ralph,, J., & Boerjan,, W. (2012). Metabolic engineering of novel lignin in biomass crops. The New Phytologist, 196(4), 978–1000. https://doi.org/10.1111/j.1469-8137.2012.04337.x
Varhegyi,, G., Jakab,, E., & Antal,, M. J. (1994). Is the broido‐shafizadeh model for cellulose pyrolysis true? Energy %26 Fuels, 8(6), 1345–1352. https://doi.org/10.1021/ef00048a025
Vasiliou,, A. K., Kim,, J. H., Ormond,, T. K., Piech,, K. M., Urness,, K. N., Scheer,, A. M., … Ellison,, G. B. (2013). Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde. The Journal of Chemical Physics, 139(10), 104310. https://doi.org/10.1063/1.4819788
Venderbosch,, R. H., & Prins,, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4(2), 178–208. https://doi.org/10.1002/bbb.205
Vercruysse,, J., Poupaert,, A., Vanholme,, R., Bastien,, C., Vanholme,, B., Boerjan,, W., … Ronsse,, F. (2016). Micropyrolysis of natural poplar mutants with altered p ‐hydroxyphenyl lignin content. Journal of Analytical and Applied Pyrolysis, 122, 377–386. https://doi.org/10.1016/j.jaap.2016.08.021
Vinu,, R., & Broadbelt,, L. J. (2012). A mechanistic model of fast pyrolysis of glucose‐based carbohydrates to predict bio‐oil composition. Energy %26 Environmental Science, 5(12), 9808–9826.
Wagenaar,, B. M., Prins,, W., & Van Swaaij,, W. P. M. (1993). Flash pyrolysis kinetics of pine wood. Fuel Processing Technology, 36(1‐3), 291–298.
Wagenaar,, B. M., Prins,, W., & Van Swaaij,, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: Modelling and experimental justification. Chemical Engineering Science, 49(24), 5109–5126.
Wang,, S., Ru,, B., Lin,, H., & Luo,, Z. (2013). Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresource Technology, 143, 378–383. https://doi.org/10.1016/j.biortech.2013.06.026
Wang,, S., Zhou,, Y., Liang,, T., & Guo,, X. (2013). Catalytic pyrolysis of mannose as a model compound of hemicellulose over zeolites. Biomass and Bioenergy, 57, 106–112. https://doi.org/10.1016/j.biombioe.2013.08.003
Wang,, S., Ru,, B., Lin,, H., Dai,, G., Wang,, Y., & Luo,, Z. (2016). Kinetic study on pyrolysis of biomass components: A critical review. Current Organic Chemistry, 20(23), 2489–2513.
Wang,, S., Ru,, B., Lin,, H., & Sun,, W. (2015). Pyrolysis behaviors of four o‐acetyl‐preserved hemicelluloses isolated from hardwoods and softwoods. Fuel, 150, 243–251. https://doi.org/10.1016/j.fuel.2015.02.045
Wang,, Z., McDonald,, A. G., Westerhof,, R. J. M., Kersten,, S. R. A., Cuba‐Torres,, C. M., Ha,, S., … Garcia‐Perez,, M. (2013). Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. Journal of Analytical and Applied Pyrolysis, 100, 56–66. https://doi.org/10.1016/j.jaap.2012.11.017
Wei,, L., Xu,, S., Zhang,, L., Zhang,, H., Liu,, C., Zhu,, H., & Liu,, S. (2006). Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Processing Technology, 87(10), 863–871. https://doi.org/10.1016/j.fuproc.2006.06.002
Werner,, K., Pommer,, L., & Broström,, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110, 130–137. https://doi.org/10.1016/j.jaap.2014.08.013
Westerhof,, R. J. M., Oudenhoven,, S. R. G., Marathe,, P. S., Engelen,, M., Garcia‐Perez,, M., Wang,, Z., & Kersten,, S. R. A. (2016). The interplay between chemistry and heat/mass transfer during the fast pyrolysis of cellulose. Reaction Chemistry %26 Engineering, 1(5), 555–566.
White,, J. E., Catallo,, W. J., & Legendre,, B. L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1), 1–33. https://doi.org/10.1016/j.jaap.2011.01.004
Williams,, A., Jones,, J. M., Ma,, L., & Pourkashanian,, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38(2), 113–137. https://doi.org/10.1016/j.pecs.2011.10.001
Windt,, M., Meier,, D., Marsman,, J. H., Heeres,, H. J., & de Koning,, S. (2009). Micro‐pyrolysis of technical lignins in a new modular rig and product analysis by gc–ms/fid and gc×gc–tofms/fid. Journal of Analytical and Applied Pyrolysis, 85(1‐2), 38–46. https://doi.org/10.1016/j.jaap.2008.11.011
Winter,, F., Wartha,, C., & Hofbauer,, H. (1999). No and n2o formation during the combustion of wood, straw, malt waste and peat. Bioresource Technology, 70(1), 39–49. https://doi.org/10.1016/S0960-8524(99)00019-X
Wornat,, M. J., Ledesma,, E. B., & Marsh,, N. D. (2001). Polycyclic aromatic hydrocarbons from the pyrolysis of catechol (ortho‐dihydroxybenzene), a model fuel representative of entities in tobacco, coal, and lignin. Fuel, 80(12), 1711–1726.
Wu Benjamin,, C., Klein Michael,, T., & Sandler Stanley,, I. (2004). The benzylphenylether thermolysis mechanism: Insights from phase behavior. AIChE Journal, 36(8), 1129–1136. https://doi.org/10.1002/aic.690360802
Wu,, S., Lv,, G., & Lou,, R. (2012). Applications of chromatography hyphenated techniques in the field of lignin pyrolysis. In R. Davarnejad, (Ed.), Applications of Gas Chromatography. ISBN: 978‐953‐51‐0260‐1, InTech. Retrived from http://www.intechopen.com/books/applications‐of‐gaschromatography/applications‐of‐chromatography‐hyphenated‐techniques‐in‐the‐field‐of‐lignin‐pyrolysis
Xu,, M. X., Khachatryan,, L., Baev,, A., & Asatryan,, R. (2016). Radicals from the gas‐phase pyrolysis of a lignin model compound: P‐coumaryl alcohol. RSC Advances, 6(67), 62399–62405. https://doi.org/10.1039/c6ra11372a
Xu,, R., Ferrante,, L., Briens,, C., & Berruti,, F. (2009). Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed. Journal of Analytical and Applied Pyrolysis, 86(1), 58–65. https://doi.org/10.1016/j.jaap.2009.04.005
Xue,, Q., Dalluge,, D., Heindel,, T. J., Fox,, R. O., & Brown,, R. C. (2012). Experimental validation and cfd modeling study of biomass fast pyrolysis in fluidized‐bed reactors. Fuel, 97, 757–769. https://doi.org/10.1016/j.fuel.2012.02.065
Xue,, Q., Heindel,, T. J., & Fox,, R. O. (2011). A cfd model for biomass fast pyrolysis in fluidized‐bed reactors. Chemical Engineering Science, 66(11), 2440–2452. https://doi.org/10.1016/j.ces.2011.03.010
Yang,, H., Furutani,, Y., Kudo,, S., Hayashi,, J.‐i., & Norinaga,, K. (2016). Experimental investigation of thermal decomposition of dihydroxybenzene isomers: Catechol, hydroquinone, and resorcinol. Journal of Analytical and Applied Pyrolysis, 120, 321–329. https://doi.org/10.1016/j.jaap.2016.05.019
Yang,, H., Kudo,, S., Kuo,, H.‐P., Norinaga,, K., Mori,, A., Mašek,, O., & Hayashi,, J.‐I. (2013). Estimation of enthalpy of bio‐oil vapor and heat required for pyrolysis of biomass. Energy %26 Fuels, 27(5), 2675–2686. https://doi.org/10.1021/ef400199z
Yang,, H., Yan,, R., Chen,, H., Lee,, D. H., & Zheng,, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12‐13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
Yang,, H.‐M., Appari,, S., Kudo,, S., Hayashi,, J.‐i., & Norinaga,, K. (2015). Detailed chemical kinetic modeling of vapor‐phase reactions of volatiles derived from fast pyrolysis of lignin. Industrial %26 Engineering Chemistry Research, 54(27), 6855–6864. https://doi.org/10.1021/acs.iecr.5b01289
Yang,, Z., Kumar,, A., & Huhnke,, R. L. (2015). Review of recent developments to improve storage and transportation stability of bio‐oil. Renewable and Sustainable Energy Reviews, 50, 859–870. https://doi.org/10.1016/j.rser.2015.05.025
Yu,, J., Yao,, C., Zeng,, X., Geng,, S., Dong,, L., Wang,, Y., … Xu,, G. (2011). Biomass pyrolysis in a micro‐fluidized bed reactor: Characterization and kinetics. Chemical Engineering Journal, 168(2), 839–847. https://doi.org/10.1016/j.cej.2011.01.097
Yu,, J., Yue,, J., Liu,, Z., Dong,, L., Xu,, G., Zhu,, J., … Sun,, L. (2010). Kinetics and mechanism of solid reactions in a micro fluidized bed reactor. AIChE Journal, 56(11), 2905–2912. https://doi.org/10.1002/aic.12205
Yu,, J., Zeng,, X., Zhang,, J., Zhong,, M., Zhang,, G., Wang,, Y., & Xu,, G. (2013). Isothermal differential characteristics of gas–solid reaction in micro‐fluidized bed reactor. Fuel, 103, 29–36. https://doi.org/10.1016/j.fuel.2011.09.060
Zakzeski,, J., Bruijnincx,, P. C. A., Jongerius,, A. L., & Weckhuysen,, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 110(6), 3552–3599.
Zhang,, H., Xiao,, R., Wang,, D., He,, G., Shao,, S., Zhang,, J., & Zhong,, Z. (2011). Biomass fast pyrolysis in a fluidized bed reactor under n2, co2, co, ch4 and h2 atmospheres. Bioresource Technology, 102(5), 4258–4264. https://doi.org/10.1016/j.biortech.2010.12.075
Zhang,, J., Choi,, Y. S., Yoo,, C. G., Kim,, T. H., Brown,, R. C., & Shanks,, B. H. (2015). Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis. ACS Sustainable Chemistry %26 Engineering, 3(2), 293–301. https://doi.org/10.1021/sc500664h
Zhang,, J., Nolte,, M. W., & Shanks,, B. H. (2014). Investigation of primary reactions and secondary effects from the pyrolysis of different celluloses. ACS Sustainable Chemistry %26 Engineering, 2(12), 2820–2830. https://doi.org/10.1021/sc500592v
Zhang,, X., Li,, J., Yang,, W., & Blasiak,, W. (2011). Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis. Energy %26 Fuels, 25(8), 3739–3746. https://doi.org/10.1021/ef2005139
Zhou,, H., Jensen,, A. D., Glarborg,, P., & Kavaliauskas,, A. (2006). Formation and reduction of nitric oxide in fixed‐bed combustion of straw. Fuel, 85(5), 705–716. https://doi.org/10.1016/j.fuel.2005.08.038
Zhou,, S., Brown,, R. C., & Bai,, X. (2015). The use of calcium hydroxide pretreatment to overcome agglomeration of technical lignin during fast pyrolysis. Green Chemistry, 17(10), 4748–4759. https://doi.org/10.1039/c5gc01611h
Zhou,, S., Pecha,, B., van Kuppevelt,, M., McDonald,, A. G., & Garcia‐Perez,, M. (2014). Slow and fast pyrolysis of douglas‐fir lignin: Importance of liquid‐intermediate formation on the distribution of products. Biomass and Bioenergy, 66, 398–409. https://doi.org/10.1016/j.biombioe.2014.03.064
Zhou,, X., Li,, W., Mabon,, R., & Broadbelt,, L. J. (2017). A critical review on hemicellulose pyrolysis. Energy Technology, 1(5), 52–79.
Zhou,, X., Nolte,, M. W., Mayes,, H. B., Shanks,, B. H., & Broadbelt,, L. J. (2014). Experimental and mechanistic modeling of fast pyrolysis of neat glucose‐based carbohydrates. 1. Experiments and development of a detailed mechanistic model. Industrial %26 Engineering Chemistry Research, 53(34), 13274–13289. https://doi.org/10.1021/ie502259w
Zhou,, X., Li,, W., Mabon,, R., & Broadbelt,, L. J. (2018). A mechanistic model of fast pyrolysis of hemicellulose. Energy %26 Environmental Science, 11(5), 1240–1260.
Zhou,, Z., Jin,, H., Zhao,, L., Wang,, Y., Wen,, W., Yang,, J., … Qi,, F. (2017). A thermal decomposition study of pine wood under ambient pressure using thermogravimetry combined with synchrotron vacuum ultraviolet photoionization mass spectrometry. Proceedings of the Combustion Institute, 36(2), 2217–2224. https://doi.org/10.1016/j.proci.2016.06.081