Agrawal,, N., Ahiduzzaman,, M., & Kumar,, A. (2018). The development of an integrated model for the assessment of water and GHG footprints for the power generation sector. Applied Energy, 216, 558–575. https://doi.org/10.1016/J.APENERGY.2018.02.116
Allegrini,, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., & Evins, R. (2015). A review of modelling approaches and tools for the simulation of district‐scale energy systems. Renewable and Sustainable Energy Reviews, 52, 1391–1404. https://doi.org/10.1016/j.rser.2015.07.123
Bačeković,, I., & Østergaard,, P. A. (2018). Local smart energy systems and cross‐system integration. Energy, 151, 812–825. https://doi.org/10.1016/J.ENERGY.2018.03.098
Bazmi,, A. A., & Zahedi,, G. (2011). Sustainable energy systems: Role of optimization modeling techniques in power generation and supply ‐ A review. Renewable and Sustainable Energy Reviews, 15(8), 3480–3500. https://doi.org/10.1016/j.rser.2011.05.003
Bergendahl,, P.‐A., & Bergström,, C. (1982). Long‐term oil substitution—The IEA‐Markal model and some simulation results for Sweden. In The impact of rising oil prices on the world economy (pp. 97–112). London, England: Palgrave Macmillan UK. https://doi.org/10.1007/978-1-349-06361-1_7
Bhattacharyya,, S. C., & Timilsina,, G. R. (2010). A review of energy system models. International Journal of Energy Sector Management, 4(4), 494–518. https://doi.org/10.1108/17506221011092742
Bouckaert,, S., Selosse, S., Dubreuil, A., Assoumou, E., & Maïzi, N. (2012). Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM‐FR). Journal of Systemics, Cybernetics and Informatics, 10(1), 89–94.
Capros,, P., Mantzos,, L., Papandreou,, V., Tasios,, N., & Klaassen,, G. (2008). Energy systems analysis of CCS development in Europe. 2008 5th International Conference on the European Electricity Market (pp. 1–6). IEEE. https://doi.org/10.1109/EEM.2008.4579071
Capros,, P., Tasios,, N., & Marinakis,, A. (2012). Very high penetration of renewable energy sources to the European electricity system in the context of model‐based analysis of an energy roadmap towards a low carbon EU economy by 2050. 2012 9th International Conference on the European Energy Market (pp. 1–8). IEEE. https://doi.org/10.1109/EEM.2012.6254669
Capros,, P., Paroussos, L., Fragkos, P., Tsani, S., Boitier, B., Wagner, F., … Bollen, J. (2014). Description of models and scenarios used to assess European decarbonisation pathways. Energy Strategy Reviews, 2(3–4), 220–230. https://doi.org/10.1016/j.esr.2013.12.008
Chiodi,, A., Gargiulo, M., Deane, J. P., Lavigne, D., Rout, U. K., & Ó Gallachóir, B. P. (2013). Modelling the impacts of challenging 2020 non‐ETS GHG emissions reduction targets on Ireland`s energy system. Energy Policy, 62, 1438–1452.
Collins,, S., Deane,, J. P., Gallachóir,, Ó., & B. (2017). Adding value to EU energy policy analysis using a multi‐model approach with an EU‐28 electricity dispatch model. Energy, 130, 433–447.
Connolly,, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082. https://doi.org/10.1016/j.apenergy.2009.09.026
Criqui,, P., Mima, S., Menanteau, P., & Kitous, A. (2015). Mitigation strategies and energy technology learning: An assessment with the POLES model. In Technological forecasting and social change (pp. 119–136). London: Elsevier Inc. https://doi.org/10.1016/j.techfore.2014.05.005
Czyrnek‐Delêtre,, M. M., Chiodi, A., Murphy, J. D., & Ó Gallachóir, B. P. (2016). Impact of including land‐use change emissions from biofuels on meeting GHG emissions reduction targets: The example of Ireland. Clean Technologies and Environmental Policy, 18(6), 1745–1758. https://doi.org/10.1007/s10098-016-1145-8
Daly,, H. E., Ramea, K., Chiodi, A., Yeh, S., Gargiulo, M., & Ó Gallachóir, B. (2014). Incorporating travel behaviour and travel time into TIMES energy system models. Applied Energy, 135, 429–439. https://doi.org/10.1016/j.apenergy.2014.08.051
de L. Musgrove,, A. R. (1984). A linear programming analysis of liquid‐fuel production and use options for Australia. Energy, 9(4), 281–302. https://doi.org/10.1016/0360-5442(84)90100-2
de Moura,, G. N. P., Legey,, L. F. L., & Howells,, M. (2018). A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – And the bargaining power of neighbouring countries: A cooperative games approach. Energy Policy, 115, 470–485. https://doi.org/10.1016/J.ENPOL.2018.01.045
Després,, J., Mima, S., Kitous, A., Criqui, P., Hadjsaid, N., & Noirot, I. (2017). Storage as a flexibility option in power systems with high shares of variable renewable energy sources: A POLES‐based analysis. Energy Economics, 64, 638–650. https://doi.org/10.1016/J.ENECO.2016.03.006
Egberts,, G. (1981). MARKAL — Ein LP‐Modell für die Internationale Energieagentur. Operations Research Spektrum, 3(2), 95–100. https://doi.org/10.1007/BF01720101
Gargiulo,, M., & Gallachóir,, B. Ó. (2013). Long‐term energy models: Principles, characteristics, focus, and limitations. WIREs Energy and Environment, 2(2), 158–177. https://doi.org/10.1002/wene.62
Gielen,, D., & Changhong,, C. (2001). The CO2 emission reduction benefits of Chinese energy policies and environmental policies: A case study for Shanghai, period 1995–2020. Ecological Economics, 39(2), 257–270. https://doi.org/10.1016/S0921-8009(01)00206-3
Haiges,, R., Wang, Y.D., Ghoshray, A., & Roskilly, A. P. (2017). Optimization of Malaysia`s power generation mix to meet the electricity demand by 2050. Energy Procedia, 142, 2844–2851. https://doi.org/10.1016/j.egypro.2017.12.431
Hall,, L. M. H., & Buckley,, A. R. (2016). A review of energy systems models in the UK: Prevalent usage and categorisation. Applied Energy, 169, 607–628. https://doi.org/10.1016/j.apenergy.2016.02.044
Handayani,, K., Krozer,, Y., & Filatova,, T. (2017). Trade‐offs between electrification and climate change mitigation: An analysis of the Java‐Bali power system in Indonesia. Applied Energy, 208, 1020–1037. https://doi.org/10.1016/J.APENERGY.2017.09.048
Holmgren,, K., & Amiri,, S. (2007). Internalising external costs of electricity and heat production in a municipal energy system. Energy Policy, 35(10), 5242–5253. https://doi.org/10.1016/j.enpol.2007.04.026
Huang,, W., Chen,, W., & Anandarajah,, G. (2017). The role of technology diffusion in a decarbonizing world to limit global warming to well below 2°C: An assessment with application of Global TIMES model. Applied Energy, 208(March), 291–301. https://doi.org/10.1016/j.apenergy.2017.10.040
Huang,, W., Ma,, D., & Chen,, W. (2017). Connecting water and energy: Assessing the impacts of carbon and water constraints on China`s power sector. Applied Energy, 185, 1497–1505.
IEA. (2015). Energy and climate change. World Energy Outlook Special Report, 1, 1–200. https://doi.org/10.1038/479267b
IEA. (2018). IEA statistics. Retrieved from https://www.iea.org/statistics/
Ioakimidis,, C., Koukouzas, N., Chatzimichali, A., Casimiro, S., & Itskos, G. (2011). Assessment for carbon capture and storage opportunities. In Computer aided chemical engineering (pp. 1939–1943). London: Elsevier. https://doi.org/10.1016/B978-0-444-54298-4.50166-5
Jebaraj,, S., & Iniyan,, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, 10(4), 281–311. https://doi.org/10.1016/j.rser.2004.09.004
Jia,, L., Wenying, C., Deshun, L., Liu, J., Chen, W., & Liu, D. (2011). Scenario analysis of China`s future energy demand based on TIMES model system. Energy Procedia, 5, 1803–1808. https://doi.org/10.1016/j.egypro.2011.03.307
Keirstead,, J., Jennings,, M., & Sivakumar,, A. (2012). A review of urban energy system models: Approaches, challenges and opportunities. Renewable and Sustainable Energy Reviews, 16(6), 3847–3866. https://doi.org/10.1016/J.RSER.2012.02.047
Krajačić,, G., Duić,, N., & da Carvalho,, M. G. (2009). H2RES, energy planning tool for Island energy systems – The case of the Island of Mljet. International Journal of Hydrogen Energy, 34(16), 7015–7026. https://doi.org/10.1016/J.IJHYDENE.2008.12.054
Krey,, V. (2014). Global energy‐climate scenarios and models: A review. WIREs Energy and Environment, 3, 363–383. https://doi.org/10.1002/wene.98
Laha,, P., & Chakraborty,, B. (2017). Energy model – A tool for preventing energy dysfunction. Renewable and Sustainable Energy Reviews, 73, 95–114. https://doi.org/10.1016/j.rser.2017.01.106
Luukkanen,, J., Akgün,, O., Kaivo‐oja,, J., Korkeakoski,, M., Pasanen,, T., Panula‐Ontto,, J., & Vehmas,, J. (2015). Long‐run energy scenarios for Cambodia and Laos: Building an integrated techno‐economic and environmental modelling framework for scenario analyses. Energy, 91, 866–881. https://doi.org/10.1016/J.ENERGY.2015.08.091
Martinez Soto,, A., & Jentsch,, M. F. (2016). Comparison of prediction models for determining energy demand in the residential sector of a country. Energy and Buildings, 128, 38–55. https://doi.org/10.1016/j.enbuild.2016.06.063
Mati,, A. A., Ajuji,, A. S., & Bajoga,, B. G. (2012). End‐use electricity demand profile analysis using MESSAGE modeling approach. Asia‐Pacific Power and Energy Engineering Conference (APPEEC), IEEE (pp. 1–4). https://doi.org/10.1109/APPEEC.2012.6307570
McCollum,, D., Yang, C., Yeh, S., & Ogden, J. (2012). Deep greenhouse gas reduction scenarios for California ‐ Strategic implications from the CA‐TIMES energy‐economic systems model. Energy Strategy Reviews, 1(1), 19–32. https://doi.org/10.1016/j.esr.2011.12.003
Meschede,, H., Child,, M., & Breyer,, C. (2018). Assessment of sustainable energy system configuration for a small canary Island in 2030. Energy Conversion and Management, 165, 363–372. https://doi.org/10.1016/J.ENCONMAN.2018.03.061
Nogueira de Oliveira,, L. P., Rodriguez Rochedo, P. R., Portugal‐Pereira, J., Hoffmann, B. S., Aragão, R., Milani, R., … Schaeffer, R. (2016). Critical technologies for sustainable energy development in Brazil: Technological foresight based on scenario modelling. Journal of Cleaner Production, 130, 12–24. https://doi.org/10.1016/J.JCLEPRO.2016.03.010
Paltsev,, S. (2017). Energy scenarios: The value and limits of scenario analysis. WIREs Energy and Environment, 6, e242. https://doi.org/10.1002/wene.242
Pan,, L. J., Xie,, Y. B., & Li,, W. (2013). An analysis of emission reduction of chief air pollutants and greenhouse gases in Beijing based on the LEAP model. Procedia Environmental Sciences, 18(X), 347–352. https://doi.org/10.1016/j.proenv.2013.04.045
Pfenninger,, S., Hawkes,, A., & Keirstead,, J. (2014). Energy systems modeling for twenty‐first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74–86. https://doi.org/10.1016/j.rser.2014.02.003
Proost,, S., Van Regemorter, D., Lantz, F., & Saint‐Antonin, V. (2000). Limiting air pollution from transport: Economic evaluation of policy options for the European Union. scopus, 14(1–4), 320–330.
Rafaj,, P., & Kypreos,, S. (2007). Internalisation of external cost in the power generation sector: Analysis with global multi‐regional MARKAL model. Energy Policy, 35(2), 828–843.
Sailor,, V. L., & Rath‐Nagel,, S. (1982). Markal, a computer model designed for multi‐national energy system analyses. Energy Modelling Studies and Conservation, 1, 635. https://doi.org/10.1016/B978-0-08-027416-4.50057-0
Sgobbi,, A., Nijs, W., De Miglio, R., Chiodi, A., Gargiulo, M., & Thiel, C. (2016). How far away is hydrogen? Its role in the medium and long‐term decarbonisation of the European energy system. International Journal of Hydrogen Energy, 41(1), 19–35.
Suganthi,, L., & Samuel,, A. A. (2012). Energy models for demand forecasting ‐ A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. https://doi.org/10.1016/j.rser.2011.08.014
Taliotis,, C., Shivakumar,, A., Ramos,, E., Howells,, M., Mentis,, D., Sridharan,, V., … Mofor,, L. (2016). An indicative analysis of investment opportunities in the African electricity supply sector — Using TEMBA (The Electricity Model Base for Africa). Energy for Sustainable Development, 31, 50–66. https://doi.org/10.1016/J.ESD.2015.12.001
Tsai,, M.‐S., & Chang,, S.‐L. (2013). Taiwan`s GHG mitigation potentials and costs: An evaluation with the MARKAL model’. Renewable and Sustainable Energy Reviews, 20, 294–305. https://doi.org/10.1016/J.RSER.2012.12.007
van Vliet,, O., McCollum, D., Pachauri, S., Nagai, Y., Rao, S., & Riahi, K. (2012). Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution. Energy Economics, 34, S470–S480. https://doi.org/10.1016/J.ENECO.2012.02.001
Wagh,, M. M., & Kulkarni,, V. V. (2018). Modeling and optimization of integration of Renewable Energy Resources (RER) for minimum energy cost, minimum CO2 Emissions and sustainable development, in recent years: A review. Materials Today: Proceedings, 5(1), 11–21. https://doi.org/10.1016/j.matpr.2017.11.047
Yin,, X., & Chen,, W. (2013). Comparison of carbon emission scenarios predicted by the China TIMES model. scopus, 53(9), 1315–1321.
Zhang,, H., Chen,, W., & Huang,, W. (2016). TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective. Applied Energy, 162, 1505–1514. https://doi.org/10.1016/j.apenergy.2015.08.124