Aronsson,, P., & Perttu,, K. (2001). Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. The Forestry Chronicle, 77(2), 293–299.
Augustenborg,, C. A., Finnan,, J., Mcbennett,, L., Connolly,, V., Priegnitz,, U., & Müller,, C. (2012). Farmers` perspectives for the development of a bioenergy industry in Ireland. GCB Bioenergy, 4, 597–610.
Berndes,, G. (2002). Bioenergy and water – The implications of large‐scale bioenergy production for water use and supply. Global Environmental Change, 12(4), 7–25.
Berndes,, G., Ahlgren,, S., Börjesson,, P., & Cowie,, A. (2013). Bioenergy and land use change – State of the art. WIREs Energy and Environment, 2, 282–303. https://doi.org/10.1002/wene.41
Berndes,, G., Börjesson,, P., Ostwald,, M., & Palm,, M. (2008). Multifunctional biomass production systems –an overview with presentation of specific applications in India and Sweden. Biofuels, Bioproducts and Biorefining, 2, 16–25.
Berndes,, G., Fredrikson,, F., & Börjesson,, P. (2004). Cadmium accumulation and Salix‐based phytoextraction on arable land in Sweden. Agriculture, Ecosystems %26 Environment, 103, 207–223.
Berndes,, G., Hoogwijk,, M., & van den Broek,, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25, 1–28.
BMUB. (2016). Climate action plan 2050. Principles and goals of the German government`s climate policy. Berlin, Germany: Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) Available at: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/klimaschutzplan_2050_en_bf.pdf
Boll,, T., von Haaren,, C., & Rode,, M. (2015). The effects of short rotation coppice on the visual landscape. In D. B. Manning,, A. Bemmann,, M. Bredemeier,, N. Lamersdorf,, & C. Ammer, (Eds.), Bioenergy from dendromass for the sustainable development of rural areas (pp. 105–119). Weinheim, Germany: Wiley‐VCH Verlag GmbH %26 Co. KGaA ISBN: 978‐3‐527‐33764‐4.
Börjesson,, P. (1999). Environmental effects of energy crop cultivation in Sweden – I: Identification and quantification. Biomass and Bioenergy, 16, 137–154.
Börjesson,, P., & Berndes,, G. (2006). The prospects for willow plantations for wastewater treatment in Sweden. Biomass and Bioenergy, 30, 428–438.
Bredemeier,, M., Busch,, G., Hartmann,, L., Jansen,, M., Richter,, F., & Lamersdorf,, N. P. (2015). Fast growing plantations for wood production and integration of ecological effects and economic perspectives. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00072
Busch,, G. (2017). A spatial explicit scenario method to support participative regional land‐use decisions regarding economic and ecological options of short rotation coppice (SRC) for renewable energy production on arable land: Case study application for the Göttingen district, Germany. Energy, Sustainability and Society, 7, 2. https://doi.org/10.1186/s13705-017-0105-4
Busch,, G. (2019). Using “BEAST” to support the local dialogue on lignocellulosic cropping for energy use, climate protection and sustaining ecosystem services. Tool description and case study scenario application for the Göttingen district, Germany. IEA Bioenergy Task 43 report: TR2019‐03. Available at: http://task43.ieabioenergy.com/publications/using-beast-to-support-the-local-dialogue-on-lignocellulosic-cropping-for-energy-use-climate-protection-and-sustaining-ecosystem-services-tr2019-05/
Cacho,, J. F., Youssef,, M. A., Chescheir,, G. M., Skaggs,, R. W., Appelboom,, T. W., Leggett,, Z. H., … Arellano,, C. (2018). Effects of forest‐based bioenergy feedstock production on shallow groundwater quality of a drained forest soil. Science of the Total Environment, 631, 13–22.
Cacho,, J. F., Youssef,, M. A., Chescheir,, G. M., Skaggs,, R. W., Leggett,, Z. H., Sucre,, E. B., … Arellano,, C. (2015). Impacts of switchgrass‐loblolly pine intercropping on soil physical properties of a drained forest. Transactions of the ASABE, 58(6), 1573–1583.
Cacho,, J. F., Youssef,, M. A., Shi,, W., Chescheir,, G. M., Skaggs,, R. W., Tian,, S., … Arellano,, C. (2018). Impacts of forest‐based bioenergy feedstock production on soil nitrogen cycling. Forest Ecology and Management, 419, 227–239.
Chescheir, G.M., Nettles, J.E., Youssef, M.A., Birgand, F., Amatya, D.M, Miller, D.A, …, Allen, E. (2018). Optimization of southeastern forest biomass crop production: A watershed scale evaluation of the sustainability and productivity of dedicated energy crop and woody biomass operations (No. DOE‐NCSU‐04395). North Carolina State University, Raleigh, NC. Available at: https://www.researchgate.net/publication/329127199_Optimization_of_Southeastern_Forest_Biomass_Crop_Production_A_Watershed_Scale_Evaluation_of_the_Sustainability_and_Productivity_of_Dedicated_Energy_Crop_and_Woody_Biomass_Operations
Christian,, D. P., Niemi,, G. J., Hanowski,, J. M., & Collins,, P. (1994). Perspectives on biomass energy tree plantations and changes in habitat for biological organisms. Biomass and Bioenergy, 6, 31–39.
Clarke,, L., Jiang,, K., Akimoto,, K., Babiker,, M., Blanford,, G., Fisher‐Vanden,, K., … Van Vuuren,, D. P. (2014). Assessing transformation pathways. In O. Edenhofer,, R. Pichs‐Madruga,, Y. Sokona,, E. Farahani,, S. Kadner,, K. Seyboth,, et al. (Eds.), Climate change mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change (pp. 413–510). Cambridge, England/New York, NY: Cambridge University Press.
Clarke,, R., Sosa,, A., & Murphy,, F. (2019). Spatial and life cycle assessment of bioenergy‐driven land‐use changes in Ireland. Science of the Total Environment, 664, 262–275.
Cooper,, D., Olsen,, G., & Bartle,, J. (2005). Capture of agricultural surplus water determines the productivity and scale of new low‐rainfall woody crop industries. Australian Journal of Experimental Agriculture, 45, 1369–1388.
Creutzig,, F., Ravindranath,, N. H., Berndes,, G., Bolwig,, S., Bright,, R., Cherubini,, F., … Masera,, O. (2014). Bioenergy and climate change mitigation: An assessment. GCB Bioenergy, 7(5), 916–944. https://doi.org/10.1111/gcbb.12205
CSIRO. (2011). Flight path to sustainable aviation: Towards establishing a sustainable aviation fuels industry in Australia and New Zealand. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Newcastle, NSW. Available at: https://publications.csiro.au/rpr/download?pid=csiro:EP107203%26dsid=DS3
Dáil Éireann. (2015). Debate, Vol. 884 No. 1, Written Answer No. 149 ‘Alternative Farm Enterprises’, 24th June 2015.
Dáil Éireann. (2019a). Debate: Renewable energy projects, 27th March 2019.
Dáil Éireann. (2019b). Debate: Renewable heat incentive, 8th May 2019.
Daioglou,, V., Doelman,, J. C., Wicke,, B., Faaji,, A., & van Vuuren,, D. P. (2019). Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 54, 88–101. https://doi.org/10.1016/j.gloenvcha.2018.11.012
Dale,, B., Anderson,, J., Brown,, R., Csonka,, S., Dale,, V. H., Herwick,, G., … Wang,, M. (2014). Take a closer look: Biofuels can support environmental, economic and social goals. Environmental Science %26 Technology, 48(13), 7200–7203.
Dale,, V. H., Efroymson,, R. A., Kline,, K. L., Langholtz,, M. H., Leiby,, P. N., Oladosu,, G. A., … Hilliard,, M. R. (2013). Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures. Ecological Indicators, 26, 87–102.
Dale,, V. H., Kline,, K. L., Buford,, M. A., Volk,, T. A., Smith,, C. T., & Stupak,, I. (2016). Incorporating bioenergy into sustainable landscape designs. Renewable %26 Sustainable Energy Reviews, 56, 1158–1171.
Dale,, V. H., Kline,, K. L., Parish,, E. S., & Eichler,, S. E. (2019). Engaging stakeholders to assess ability. Landscape Ecology, 34(6), 1199–1218. https://doi.org/10.1007/s10980-019-00848-1, http://link.springer.com/article/10.1007/s10980-019-00848-1
Dale,, V. H., Kline,, K. L., Perla,, D., & Lucier,, A. (2013). Communicating about bioenergy sustainability. Environmental Management, 51(2), 279–290. https://doi.org/10.1007/s00267-012-0014-4
Dale,, V. H., Kline,, K. L., Richard,, T. L., Karlen,, D. L., & Belden,, W. W. (2018). Bridging biofuel sustainability indicators and ecosystem services through stakeholder engagement. Biomass and Bioenergy, 114, 143–156. https://doi.org/10.1016/j.biombioe.2017.09.016
Dale,, V. H., Kline,, K. L., Wright,, L. L., Perlack,, R. D., Downing,, M., & Graham,, R. L. (2011). Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Ecological Applications, 21, 1039–1054.
Dale,, V. H., Parish,, E. S., & Kline,, K. L. (2014). Risks to global biodiversity from fossil‐fuel production exceed those from biofuel production. Biofuels, Bioproducts and Biorefining, 9(2), 177–189.
DCCAE. (2010). National Renewable Energy Action Plan – Ireland. Submitted under Article 4 of Directive 2009/28/EC. Department of Communications Energy and Natural Resources (DCCAE), Ireland. Available at: https://www.dccae.gov.ie/documents/The%20National%20Renewable%20Energy%20Action%20Plan%20(PDF).pdf
Dimitriou,, I., & Aronsson,, P. (2005). Willows for energy and phytoremediation in Sweden. Unasylva, 221(56), 47–50.
Dimitriou,, I., Berndes,, G., Englund,, O., Brown,, M., Busch,, G., Dale,, V., Devlin,, G., English,, B., Goss,, K., Jackson,, S., Kline,, K.L., McDonnell,, K., McGrath,, J., Mola‐Yudego,, B., Murphy,, F., Negri,, M.C., Parish,, E.S., Ssegane,, H., & Tyler,, D. (2018). Lignocellulosic crops in agricultural landscapes: Production systems for biomass and other environmental benefits – Examples, incentives, and barriers. IEA Bioenergy Task 43 report: 2018‐05. Available at: https://www.ieabioenergy.com/wp-content/uploads/2019/01/TR2018-05.pdf
Dimitriou,, I., & Mola‐Yudego,, B. (2016). Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. Forest Ecology and Management, 383, 99–107. https://doi.org/10.1016/j.foreco.2016.08.022
Dimitriou,, I., Mola‐Yudego,, B., & Aronsson,, P. (2012). Impact of willow short rotation coppice on water quality. Bioenergy Research, 5(3), 537–545.
Dimitriou,, I., & Rosenqvist,, H. (2011). Sewage sludge and wastewater fertilisation of short rotation coppice (SRC) for increased bioenergy production – Biological and economic potential. Biomass and Bioenergy, 35(2), 835–842.
Dimitriou,, I., Rosenqvist,, H., & Berndes,, G. (2011). Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass and Bioenergy, 35(11), 4613–4618.
Efroymson,, R. A., Dale,, V. H., Kline,, K. L., McBride,, A. C., Bielicki,, J. M., Smith,, R. L., … Shaw,, D. M. (2013). Environmental indicators of biofuel sustainability: What about context? Environmental Management, 51(2), 291–306.
Englund,, O., Berndes,, G., & Cederberg,, C. (2017). How to analyse ecosystem services in landscapes – A systematic review. Ecological Indicators, 73, 492–504. https://doi.org/10.1016/j.ecolind.2016.10.009
Englund,, O., Börjesson,, P., Berndes,, G., Scarlat,, N., Dallemand,, J.‐F., Grizzetti,, B., … Fahl,, F. (2019). Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Global Environmental Change, 60, 101990. https://doi.org/10.1016/j.gloenvcha.2019.101990
European Commission. (2009). Council Regulation (EC) No 73/2009 of 19 January 2009 establishing common rules for direct support schemes for farmers under the common agricultural policy and establishing certain support schemes for farmers, amending Regulations (EC) No 1290/2005, (EC) No 247/2006, (EC) No 378/2007 and repealing Regulation (EC) No 1782/2003.
Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T, Cook‐Patton, S. C., …, Griscom, B. W. (2018). Natural climate solutions. Science Advances, 4, eaat1869.
Farine,, D. R., O`Connell,, D. A., Raison,, J. R., May,, B. M., O`Connor,, M. H., Crawford,, D. F., … Kriticos,, D. (2011). An assessment of biomass for bioelectricity and biofuel, and for greenhouse gas emission reduction in Australia. GCB Bioenergy, 4(2), 148–175. https://doi.org/10.1111/j.1757-1707.2011.01115.x
George,, B. H., & Nicholas,, I. (2012). Developing Options for Integrated Food‐Energy Systems – Volume 1. Rationale for industry development, species criteria and selection of woody species in agricultural production areas for bioenergy in Australia. Promising resources and systems for producing bioenergy feed stocks, International Energy Agency Bioenergy Task, 43, PR02. Available from http://ieabioenergytask43.org/wp-content/uploads/2013/09/IEA_Bioenergy_Task43_PR2012-02.pdf
González‐García, S., Mola‐Yudego,, B., Dimitriou,, I., Aronsson,, P., & Murphy,, R. (2012). Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Science of the Total Environment, 421, 210–219.
González‐García,, S., Mola‐Yudego,, B., & Murphy,, R. J. (2013). Life cycle assessment of potential energy uses for short rotation willow biomass in Sweden. International Journal of Life Cycle Assessment, 18(4), 783–795. https://doi.org/10.1007/s11367-012-0536-2
Göransson,, G. (1994). Bird fauna of cultivated energy shrub forests at different heights. Biomass and Bioenergy, 6, 49–52.
Goss,, K., Abadi,, A., Crossin,, E., Stucley,, C., & Turnbull,, P. (2014). Sustainable mallee jet fuel, sustainability and life cycle assessment for supply to Perth airport, Western Australia. Crawley, Australia: Future Farm Industries Cooperative Research Centre ISBN: 9780987156273.
Graham,, J. B., Nassauer,, J. I., Currie,, W. S., Ssegane,, H., & Negri,, M. C. (2017). Assessing wild bees in perennial bioenergy landscapes: Effects of bioenergy crop composition, landscape configuration, and bioenergy crop area. Landscape Ecology, 32(5), 1023–1037.
Grigal,, D. F., & Berguson,, W. E. (1998). Soil carbon changes associated with short‐rotation systems. Biomass and Bioenergy, 14, 371–377.
Gustafsson,, L. (1987). Plant conservation aspects of energy forestry – A new type of land‐use in Sweden. Forest Ecology and Management, 21, 141–161.
Haberl,, H., Erb,, K.‐H., Krausmann,, F., Bondeau,, A., Lauk,, C., Müller,, C., … Steinberger,, J. K. (2011). Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass and Bioenergy, 35, 4753–4769.
Hatton,, T. J., & Nulsen,, R. A. (1999). Towards achieving functional ecosystem mimicry with respect to water cycling in southern Australian agriculture. Agroforestry Systems, 45, 203–214.
Helby,, P., Rosenqvist,, H., & Roos,, A. (2006). Retreat from Salix – Swedish experience with energy crops in the 1990s. Biomass and Bioenergy, 30(5), 422–427.
Huggett,, R., Wear,, D. N., Li,, R., Coulston,, J., & Liu,, S. (2013). Forecasts of forest conditions. In D. N. Wear, & J. G. Greis, (Eds.), The Southern Forest Futures Project. Gen. Tech. Rep. SRS‐GTR‐178 USDA‐Forest Service (pp. 73–101). Ashville, NC: Southern Research Station.
IATA. (2018). Fact Sheet Climate Change %26 CORSIA. Available at: https://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-climate-change.pdf
IPCC (2018). In V. Masson‐Delmotte,, P. Zhai,, H.‐O. Pörtner,, D. Roberts,, J. Skea,, P. R. Shukla,, et al. (Eds.), Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva, Switzerland: World Meteorological Organization 32 pp.
Jensen,, K., Clark,, C. D., Ellis,, P., English,, B. C., Menard,, R. J., Walsh,, M., & de la Torre Ugarte,, D. (2007). Farmer`s willingness to grow switchgrass for energy production. Biomass and Bioenergy, 31, 773–781.
Joly, C. A., Verdade, L. M., Huntley, B. J., Dale, V. H., Mace, G., Muck, B., & Ravindranath, N. H. (2015). Biofuel Impacts on Biodiversity and Ecosystem Services. In G. M. Souza, R. L. Victoria, C. A. Joly & L. M. Verdade (Eds.), Bioenergy %26 Sustainability: bridging the gaps, Chapter 16. Paris, France: Scientific Committee on Problems of the Environment (SCOPE).
Jones,, K. B., Zurlini,, G., Kienast,, F., Petrosillo,, I., Edwards,, T., Wade,, T. G., … Zaccarelli,, N. (2012). Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landscape Ecology, 28, 1175–1192.
Kline,, K. L., & Dale,, V. H. (2008). Biofuels: Effects on land and fire. Science, 321(5886), 199. https://doi.org/10.1126/science.321.5886.199
Kline,, K. L., Dale,, V. H., Lee,, R., & Leiby,, P. (2009). In defense of biofuels, done right. Issues in Science and Technology, 25(3), 75–84.
Kort,, J., Collins,, M., & Ditsch,, D. (1998). A review of soil erosion potential associated with biomass crops. Biomass and Bioenergy, 14, 351–359.
Landkreis Göttingen. (2013). Landkreis Göttingen – Integriertes Klimaschutzkonzept für den Landkreis. Available at: http://www.landkreis-goettingen.de
Langeveld,, H., Quist‐Wessel,, F., Dimitriou,, I., Aronsson,, P., Baum,, C., Schulz,, U., … Berndes,, G. (2012). Assessing environmental impacts of short rotation coppice (SRC) expansion: Model definition and preliminary results. Bioenergy Research, 5(3), 621–635.
McBride,, A., Dale,, V. H., Baskaran,, L., Downing,, M., Eaton,, L., Efroymson,, R. A., … Storey,, J. (2011). Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators, 11(5), 1277–1289.
McCormick,, K., & Kåberger,, T. (2005). Exploring a pioneering bioenergy system: The case of Enköping in Sweden. Journal of Cleaner Production, 13(10–11), 1003–1014.
McGrath,, J. F., Goss,, K. F., Brown,, M. W., Bartle,, J. R., & Abadi,, A. (2016). Aviation biofuel from integrated woody biomass in southern Australia. WIREs Energy and Environment, 6, e221. https://doi.org/10.1002/wene.221
McLaughlin,, S., Bouton,, J., Bransby,, D., Conger,, B., Ocumpaugh,, W., Parrish,, D., … Wullschleger,, S. (1999). Developing switchgrass as a bioenergy crop. In J. Janick, (Ed.), Perspectives on new crops and new uses. Alexandria, VA: ASHS Press.
MEA. (2005). Millennium ecosystem assessment: Ecosystems and human well‐being: Synthesis. Washington, DC: Island Press.
Mirck,, J., Isebrands,, J., Verwijst,, T., & Ledin,, S. (2005). Development of short rotation willow coppice systems for environmental purposes in Sweden. Biomass %26 Bioenergy, 28(2), 219–228.
Mishra,, S. K., Negri,, M. C., Kozak,, J., Cacho,, J. F., Quinn,, J., Secchi,, S., & Ssegane,, H. (2019). Valuation of ecosystem services in alternative bioenergy landscape scenarios. GCB Bioenergy. https://doi.org/10.1111/gcbb.12602
Mola‐Yudego,, B. (2011). Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986–2000. Biomass %26 Bioenergy, 35, 446–453. https://doi.org/10.1016/j.biombioe.2010.09.004
Mola‐Yudego,, B., Dimitriou,, I., Gonzalez‐Garcia,, S., Gritten,, D., & Aronsson,, P. (2014). A conceptual framework for the introduction of energy crops. Renewable Energy, 72, 29–38.
Mola‐Yudego,, B., & González‐Olabarria,, J. R. (2010). Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: Lessons to be learned about the spread of energy crops. Biomass %26 Bioenergy, 34, 442–448. https://doi.org/10.1016/j.biombioe.2009.12.008
Mola‐Yudego,, B., & Pelkonen,, P. (2011). Pulling effects of district heating plants on the adoption and spread of willow plantations for biomass: The power plant in Enköping (Sweden). Biomass %26 Bioenergy, 35(7), 2986–2992.
Mooney,, D. F., Roberts,, R. K., English,, B. C., Tyler,, D. D., & Larson,, J. A. (2009). Yield and breakeven price of “Alamo” switchgrass for biofuels in Tennessee. Agronomy Journal, 101, 1234–1242.
Murphy,, F., Devlin,, G., & Mcdonnell,, K. (2014). Energy requirements and environmental impacts associated with the production of short rotation willow (Salix sp.) chip in Ireland. GCB Bioenergy, 6, 727–739.
Murphy,, F., & McDonnell,, K. (2017). Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry. Energy Policy, 104, 80–88.
Muwamba, A., Amatya, D., Ssegane, H., Chescheir, G. M., Appleboom, T, Tollner, E. W., … Tian, S. (2015). Effects of site preparation for pine forest/switchgrass intercropping on water quality. Journal of Environmental Quality, 44(4), 1263–1272.
Muwamba, A., Amatya, D., Chescheir, G. M., Nettles, J., Appleboom, T, Ssegane, H., … Tian, S. (2017). Water quality effects of switchgrass intercropping on pine forest in coastal North Carolina. Transactions of the ASABE, 60(5), 1607–1620.
Nordborg,, M., Berndes,, G., Dimitriou,, I., Henriksson,, A., Mola‐Yudego,, B., & Rosenqvist,, H. (2018). Energy analysis of willow production for bioenergy in Sweden. Renewable and Sustainable Energy Reviews, 93, 473–482. https://doi.org/10.1016/j.rser.2018.05.045
Parish,, E. S., Dale,, V. H., English,, B. C., Jackson,, S. W., & Tyler,, D. D. (2016). Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee. Ecosphere, 7(2), e01206.
Parish,, E. S., Hilliard,, M., Baskaran,, L. M., Dale,, V. H., Griffiths,, N. A., Mulholland,, P. J., … Middleton,, R. (2012). Multimetric spatial optimization of switchgrass plantings across a watershed. Biofuels, Bioproducts and Biorefining, 6, 58–72.
Pearman,, G I. (2013). Limits to the potential of bio‐fuels and bio‐sequestration of carbon. Energy Policy, 59, 523–535.
Perttu,, K. L., & Kowalik,, P. J. (1997). Salix vegetation filters for purification of waters and soils. Biomass %26 Bioenergy, 12, 9–19.
PMSEIC. (2010). Challenges at energy‐water‐carbon intersections (p. 88). Canberra, Australia: Prime Minister`s Science, Engineering and Innovation Council (PMSEIC).
Post,, W. M., Izaurralde,, R. C., Jastrow,, J. D., McCarl,, B. A., Amonette,, J. E., Bailey,, V. L., … Zhou,, J. (2004). Enhancement of carbon sequestration in US soils. BioScience, 54, 895–908.
Qantas Group. (2019). Qantas Group net zero emissions commitment fact sheet. Available at: https://www.qantasnewsroom.com.au/wp-content/uploads/2019/11/191111-Qantas-Group-Sustainability-Fact-Sheet.pdf
Rainbow Bee Eater. (2018). Rainbow bee eater website. Available at: http://rainbowbeeeater.com.au/
Rijtema,, P. E., & DeVries,, W. (1994). Differences in precipitation excess and nitrogen leaching from agricultural lands and forest plantations. Biomass %26 Bioenergy, 6, 103–113.
Rockström,, J., Steffen,, W., Noone,, K., Persson,, Å., Chapin, III, F. S., Lambin,, E., … & Foley,, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), 32.
Rosenqvist,, H., Aronsson,, P., Hasselgren,, K., & Perttu,, K. (1997). Economics of using municipal wastewater irrigation of willow coppice crops. Biomass %26 Bioenergy, 12(1), 1–8.
Searchinger,, T., Heimlich,, R., Houghton,, R. A., Dong,, F. X., Elobeid,, A., Fabiosa,, J., … Yu,, T. H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land‐use change. Science, 319, 1238–1240.
Simons,, J., & Speed,, R. (2011). Hydrological impacts of integrated oil mallee farming systems. Resource Management Technical Report 377, Department of Agriculture and Food, Perth, Western Australia.
Slade,, R., Bauen,, A., & Gross,, R. (2014). Global bioenergy resources. Nature Climate Change, 4, 99–105. https://doi.org/10.1038/nclimate2097
Smeets,, E. M. W., Faaij,, A. P. C., Lewandowski,, I. M., & Turkenburg,, W. C. (2006). A bottom‐up assessment and review of global bioenergy potentials to 2050. Progress in Energy and Combustion Science, 33, 56–106.
Smith, T., Lattimore, B., & Atkin, E. (Eds.) (2015). Mobilizing sustainable bioenergy supply chains. Inter‐Task Project Synthesis Report, IEA Bioenergy ExCo:2015:04. Available at: http://www.ieabioenergy.com/publications/mobilizing-sustainable-bioenergy-supply-chains/
Smith,, P., Haberl,, H., Popp,, A., Erb,, K.‐h., Lauk,, C., Harper,, R., … Rose,, S. (2013). How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19(8), 2285–2302.
Sööder, F., Nilsson,, M., Olevik,, J., Forsberg,, J., Jacobsson,, A., Holm,, L., … Ekman,, O. (2013). Industrial symbiosis in Enköping (p. 8). Linköping, Sweden: Linköping University.
Souza,, G., Ballester,, M. V. R., Cruz,, C. H. B., Chum,, H., Dale,, B., Dale,, V. H., … van der Wielen,, L. (2017). The role of bioenergy in a climate‐changing world. Environmental Development, 23, 57–64.
Ssegane,, H., & Negri,, M. C. (2016). An integrated landscape designed for commodity and bioenergy crops for a tile‐drained agricultural watershed. Journal of Environmental Quality, 45(5), 1588–1596.
Ssegane,, H., Negri,, M. C., Quinn,, J., & Urgun‐Demirtas,, M. (2015). Multifunctional landscapes: Site characterization and field‐scale design to incorporate biomass production into an agricultural system. Biomass %26 Bioenergy, 80, 179–190.
Ssegane,, H., Zumpf,, C., Negri,, M. C., Campbell,, P., Heavey,, J. P., & Volk,, T. A. (2016). The economics of growing shrub willow as a bioenergy buffer on agricultural fields: A case study in the Midwest Corn Belt. Biofuels, Bioproducts and Biorefining, 10(6), 776–789.
Stucley,, C., Schuck,, S., Sims,, S., Bland,, J., Marino,, B., Borowitzka,, M., … Thomas,, Q. (2012). Bioenergy in Australia: Status and opportunities, chapter 9: Supply and delivery of mallees. St Leonards: Bioenergy Australia Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.694.4104%26rep=rep1%26type=pdf
Styles,, D., Börjesson,, P., D`Hertefeldt,, T., Birkhofer,, K., Dauber,, J., Adams,, P., … Rosenqvist,, H. (2016). Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment. Ambio, 45, 872–884.
Thiele,, J. C., & Busch,, G. (2015). A decision support system to link stakeholder perception with regional renewable energy goals for woody biomass. In D. B. Manning,, A. Bemmann,, M. Bredemeier,, N. Lamersdorf,, & C. Ammer, (Eds.), Bioenergy from dendromass for the sustainable development of rural areas (pp. 433–445). Weinheim, Germany: Wiley‐VCH Verlag GmbH %26 Co. KGaA ISBN: 978‐3‐527‐33764‐4.
Tian,, S., Cacho,, J. F., Youssef,, M. A., Chescheir,, G. M., Fischer,, M., Nettles,, J. E., & King,, J. S. (2017). Switchgrass growth and pine–switchgrass interactions in established intercropping systems. GCB Bioenergy, 9(5), 845–857.
Tolbert,, V. R., Todd,, D. E., Jr., Mann,, L. K., Jawdy,, C. M., Mays,, D. A., Malik,, R., … Pettry,, D. E. (2002). Changes in soil quality and below‐ground carbon storage with conversion of traditional agricultural crop lands to bioenergy crop production. Environmental Pollution, 116, 97–106.
van der Hilst,, F. (2018). Location, location, location. Nature Energy, 3, 164–165. https://www.nature.com/articles/s41560-018-0094-3
Wright,, L. (2007). historical perspective on how and why switchgrass was selected as a “model” high‐potential energy crop. Oak Ridge National Laboratory, ORNL/TM‐2007/109.
Zalesny,, R. S., Berndes,, G., Dimitriou,, I., Fritsche,, U., Miller,, C., Eisenbies,, M., … Zumpf,, C. R. (2019). Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. WIREs Energy and Environment. https://doi.org/10.1002/wene.345
Zumpf,, C., Ssegane,, H., Negri,, M. C., Campbell,, P., & Cacho,, J. (2017). Yield and water quality iImpacts of field‐scale integration of willow into a continuous corn rotation system. Journal of Environmental Quality, 46(4), 811–818.