Adibi,, M., Clelland,, P., Fink,, L., Happ,, H., Kafka,, R., Raine,, J., … Trefny,, F. (1987). Power system restoration—A task force report. IEEE Transactions on Power Systems, 2(2), 271–277. https://doi.org/10.1109/TPWRS.1987.4335118
Andreotti,, A., Pizzo,, A. D., Rizzo,, R., & Tricoli,, P. (2010). An efficient architecture of a PV plant for ancillary service supplying. SPEEDAM, 2010, 678–682. https://doi.org/10.1109/SPEEDAM.2010.5542268
Antonanzas,, J., Osorio,, N., Escobar,, R., Urraca,, R., Martinez‐de‐Pison,, F. J., & Antonanzas‐Torres,, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. https://doi.org/10.1016/j.solener.2016.06.069
Bird,, L., Cochran,, J., & Wang,, X. (2014). Wind and Solar Energy Curtailment: Experience and Practices in the United States (NREL/TP‐6A20‐60983). National Renewable Energy Laboratory. Retrieved from https://www.nrel.gov/docs/fy14osti/60983.pdf.
Bloom,, A., Helman,, U., Holttinen,, H., Summers,, K., Bakke,, J., Brinkman,, G., & Lopez,, A. (2017). It`s indisputable: Five facts about planning and operating modern power systems. IEEE Power and Energy Magazine, 15(6), 22–30. https://doi.org/10.1109/MPE.2017.2729079
Bonnell,, C. (2011). Kuramoto Oscillators. Retrieved from http://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2011/Files/bonnell.pdf.
BP p.l.c. (2019). Renewable energy. Retrieved from https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy.html.
Brabandere,, K. D., Bolsens,, B., den Keybus,, J. V., Woyte,, A., Driesen,, J., & Belmans,, R. (2007). A voltage and frequency droop control method for parallel inverters. IEEE Transactions on Power Electronics, 22(4), 1107–1115. https://doi.org/10.1109/TPEL.2007.900456
Brown,, G. (2017, November 8). California`s New Smart Inverter Requirements: What “Rule 21” Means for Solar Design. Aurora Blog. Retrieved from https://blog.aurorasolar.com/californias-new-smart-inverter-requirements-what-rule-21-means-for-solar-design.
Burman,, K., Keller,, J., Kroposki,, B. D., Lilenthal,, P., Slaughter,, R., & Glassmire,, J. (2011). Renewable power options for electrical generation on Kaua`i: economics and performance modeling [NREL/TP‐7A40‐52076]. National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/docs/fy12osti/52076.pdf.
Cochran,, J., Denholm,, P., Speer,, B., & Miller,, M. (2015). Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy (NREL/TP‐6A20‐62607). National Renewable Energy Laboratory. Retrieved from https://www.nrel.gov/docs/fy15osti/62607.pdf.
Commission Regulation (EU) 2016/631 of April 14, 2016 (2016). Retrieved from https://publications.europa.eu/en/publication-detail/-/publication/1267e3d1-0c3f-11e6-ba9a-01aa75ed71a1/language-en.
Denholm,, P., & Mai,, T. (2017). Timescales of Energy Storage Needed for Reducing Energy Curtailment (NREL/TP‐6A20‐68960). National Renewable Energy Laboratory. Retrieved from https://www.nrel.gov/docs/fy17osti/68960.pdf.
Dong,, D., Wen,, B., Boroyevich,, D., Mattavelli,, P., & Xue,, Y. (2015). Analysis of phase‐locked loop low‐frequency stability in three‐phase grid‐connected power converters considering impedance interactions. IEEE Transactions on Industrial Electronics, 62(1), 310–321. https://doi.org/10.1109/TIE.2014.2334665
Dreidy,, M., Mokhlis,, H., & Mekhilef,, S. (2017). Inertia response and frequency control techniques for renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 69(C), 144–155.
EirGrid %26 SONI. (2016). RoCoF Alternative & Complementary Solutions Project: Phase 2 Study Report. EirGrid & SONI. Retrieved from http://www.eirgridgroup.com/site-files/library/EirGrid/RoCoF-Alternative-Solutions-Project-Phase-2-Report-Final.pdf.
Ela,, E., Gevorgian,, V., Fleming,, P., Zhang,, Y. C., Singh,, M., E. Muljadi,, …, N. Bhatt,. (2014). Active Power Controls from Wind Power: Bridging the Gaps (NREL/TP‐5D00‐60574). National Renewable Energy Laboratory. Retrieved from https://www.nrel.gov/docs/fy14osti/60574.pdf.
Electric Reliability Council of Texas (ERCOT). (2018). 2017 State of the Grid. Retrieved from http://www.ercot.com/content/wcm/lists/144926/ERCOT_2017_State_of_the_Grid_Report.pdf.
Enbala. (2018). Creating a 21st century utility grid with DERMS and VPPs. Microgrid Knowledge. Retrieved from https://microgridknowledge.com/white-paper/21st-century-derms-vpps/.
Energy Storage News. (2017a, May 17). California battery`s black start capability hailed as ‘major accomplishment in the energy industry’. Energy Storage News. Retrieved from https://www.energy-storage.news/news/california-batterys-black-start-capability-hailed-as-major-accomplishment-i.
Energy Storage News. (2017b, August 17). Expanded 15MWh German battery park demonstrates successful black start. Retrieved from https://www.energy-storage.news/news/expanded-15mwh-german-battery-park-demonstrates-successful-black-start.
EPRI. (2015). Short‐Circuit Phasor Models of Converter Based Renewable Energy Resources for Fault Studies (No. 000000003002005765). Electric Power Research Institute (EPRI). Retrieved from https://www.epri.com/#/pages/product/3002005765/?lang=en.
Eriksson,, R., Modig,, N., & Elkington,, K. (2018). Synthetic inertia versus fast frequency response: A definition. IET Renewable Power Generation, 12(5), 507–514. https://doi.org/10.1049/iet-rpg.2017.0370
Estanqueiro,, A. I. (2012). Wind integration in Portugal. Wind power in power systems (2nd ed.). Hoboken, NJ: Wiley.
Everoze. (2017). Batteries: Beyond the spin. Bristol: Everoze.
Fairley,, P. (2016, November 7). Can synthetic inertia from wind power stabilize grids? IEEE Spectrum: Technology, Engineering, and Science News. Retrieved from https://spectrum.ieee.org/energywise/energy/renewables/can-synthetic-inertia-stabilize-power-grids.
Foley,, A. M., Leahy,, P. G., Marvuglia,, A., & McKeogh,, E. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable Energy, 37(1), 1–8. https://doi.org/10.1016/j.renene.2011.05.033
Fosso,, O. B., Gjelsvik,, A., Haugstad,, A., Mo,, B., & Wangensteen,, I. (1999). Generation scheduling in a deregulated system. The Norwegian case. IEEE Transactions on Power Systems, 14(1), 75–81. https://doi.org/10.1109/59.744487
Gevorgian,, V., & O`Neill,, B. (2016). Advanced grid‐friendly controls demonstration project for utility‐scale PV power plants (NREL/TP‐5D00‐65368). Golden, CO: National Renewable Energy Laboratory (NREL).
Gils,, H. C. (2014). Assessment of the theoretical demand response potential in Europe. Energy, 67, 1–18. https://doi.org/10.1016/j.energy.2014.02.019
Glenwright,, T., Arakaki,, J., & Reale,, N. (2016, May 25). Renewable Energy Integration for Islands. Retrieved from https://www.esmap.org/sites/esmap.org/files/SolarCity%20-%20World%20Bank%20RE%20Study%20Tour%20May%2025%202016final_web.pdf.
Government of Tokelau. (2013). Tokelau Renewable Energy Project Case Study. Tokelau Government of Tokelau.
Graabak,, I., & Korpås,, M. (2016). Variability characteristics of European wind and solar power resources—A review. Energies, 9(6), 449. https://doi.org/10.3390/en9060449
Green,, R., & Staffell,, I. (2015). The long‐run impact of energy storage on electricity prices and generating capacity. IAEE Energy Forum, Antalaya Special, 29–30.
GWEC. (2017). GWEC Wind report 2017. Retrieved from www.gwec.net.
Hansen,, K., Breyer,, C., & Lund,, H. (2019). Status and perspectives on 100% renewable energy systems. Energy, 175, 471–480. https://doi.org/10.1016/j.energy.2019.03.092
Holttinen,, H., Kiviluoma,, J., Levy,, T., Jun,, L., Eriksen,, P. B., Orths,, A., Cutululis,, N., Neau,, E., & Dobschinski,, J. (2019). Design and operation of power systems with large amounts of wind power. Final summary report, IEA WIND Task 25, Phase four 2015–2017. Retrieved from https://cris.vtt.fi/en/publications/design-and-operation-of-power-systems-with-large-amounts-of-wind--2.
Huang,, A. (2017, August 7). Photovoltaic Synchronous Generator (PVSG): From Grid Following to Grid Forming. Retrieved from http://caper-usa.com/wp-content/uploads/2017/08/Session-I-PVSG-AHuang_8-7-17.pdf.
Hummon,, M., Palchak,, D., Denholm,, P., Jorgenson,, J., Olsen,, D. J., S. Kiliccote,, … O. Ma,. (2013). Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model (NREL/TP‐6A20‐58492). Retrieved from https://www.nrel.gov/docs/fy14osti/58492.pdf.
Hvelplund,, F. (2006). Renewable energy and the need for local energy markets. Energy, 31(13), 2293–2302. https://doi.org/10.1016/j.energy.2006.01.016
IEEE/NERC Task Force. (2018). Impact of inverter based generation on bulk power system dynamics and short circuit performance (Technical Report PES‐TR68). IEEE Power and Energy Society. Retrieved from http://resourcecenter.ieee-pes.org/product/-/download/partnumber/PES_TR_7-18_0068.
Ilic,, D., Silva,, P. G. D., Karnouskos,, S., & Griesemer,, M. (2012). An energy market for trading electricity in smart grid neighbourhoods. 2012 6th IEEE international conference on digital ecosystems and technologies (DEST), 1–6. https://doi.org/10.1109/DEST.2012.6227918
Jiang‐Hafner,, Y., Duchen,, H., Karlsson,, M., Ronstrom,, L., & Abrahamsson,, B. (2008). HVDC with voltage source converters—A powerful standby black start facility. 2008 IEEE/PES Transmission and Distribution Conference and Exposition, 1–9. https://doi.org/10.1109/TDC.2008.4517039
Johnson,, B., Rodriguez,, M., Sinha,, M., & Dhople,, S. (2017). Comparison of virtual oscillator and droop control. 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL). 1–6. https://doi.org/10.1109/COMPEL.2017.8013298
Johnson,, B. B., Dhople,, S. V., Cale,, J. L., Hamadeh,, A. O., & Krein,, P. T. (2014). Oscillator‐based inverter control for islanded three‐phase microgrids. IEEE Journal of Photovoltaics, 4(1), 387–395. https://doi.org/10.1109/JPHOTOV.2013.2280953
Johnson,, B. B., Sinha,, M., Ainsworth,, N. G., Dörfler,, F., & Dhople,, S. V. (2016). Synthesizing virtual oscillators to control islanded inverters. IEEE Transactions on Power Electronics, 31(8), 6002–6015. https://doi.org/10.1109/TPEL.2015.2497217
Kaestle,, G., & Vrana,, T. K. (2011). Improved requirements for the connection to the low voltage grid. Frankfurt, Germany: CIRED.
Keller,, J., & Kroposki,, B. (2010). Understanding Fault Characteristics of Inverter‐Based Distributed Energy Resources (NREL/TP‐550‐46698). National Renewable Energy Laboratory. Retrieved from https://www.nrel.gov/docs/fy10osti/46698.pdf.
Kenyon,, R. W., & Mather,, B. (2018). Quantifying transmission fault voltage influence and its potential impact on distributed energy resources. 2018 IEEE Electronic Power Grid (EGrid), 1–6. https://doi.org/10.1109/eGRID.2018.8598661
Kiviluoma,, J., Azevedo,, M., Holttinen,, H., & Varela,, G. Q. (2014). D5.3 grid support services at the Iberian peninsula—Iberia case study. Retrieved from https://cris.vtt.fi/en/publications/d53-grid-support-services-at-the-iberian-peninsula-iberia-case-st.
Kroposki,, B. (2016, October 20). Can smarter solar inverters save the grid? IEEE Spectrum, 53, 42–47.
Kroposki,, B., Johnson,, B., Zhang,, Y., Gevorgian,, V., Denholm,, P., Hodge,, B. M., & Hannegan,, B. (2017). Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy. IEEE Power and Energy Magazine, 15(2), 61–73. https://doi.org/10.1109/MPE.2016.2637122
Kroposki,, B., Pink,, C., DeBlasio,, R., Thomas,, H., Simões,, M., & Sen,, P. K. (2010). Benefits of power electronic interfaces for distributed energy systems. IEEE Transactions on Energy Conversion, 25(3), 901–908. https://doi.org/10.1109/TEC.2010.2053975
Lazard,. (2017, November 2). Levelized cost of energy 2017. Retrieved from https://www.lazard.com/perspective/levelized-cost-of-energy-2017/.
Lidström,, E., & Wall,, D. (2016). Frequency support by synthetic inertia from variable speed wind turbines. CIRED Workshop 2016. pp. 1–4. https://doi.org/10.1049/cp.2016.0676
Lindenmeyer,, D., Dommel,, H. W., Moshref,, A., & Kundur,, P. (2000). A framework for black start and power system restoration. 2000 Canadian Conference on Electrical and Computer Engineering. Navigating to a New Era (Cat. No.00TH8492), 1, 153–157. https://doi.org/10.1109/CCECE.2000.849689
Lopes,, J. A. P., Moreira,, C. L., Madureira,, A. G., Resende,, F. O., Wu,, X., Jayawarna,, N., …, Hatziargyriou,, N. (2005). Control strategies for microgrids emergency operation. 2005 International Conference on Future Power Systems, p. 6. https://doi.org/10.1109/FPS.2005.204226
Lu,, M., Seo,, G.‐S., Sinha,, M., Rodriguez,, F., Dhople,, S., & Johnson,, B. (2019). Adaption of Commercial Current‐controlled Inverters for Operation with Virtual Oscillator Control. 2019 Applied Power Electronics Conference.
Matevosyan,, J. (2019, February 20). Evolution of ERCOT`s Frequency Control and Ancillary Services for Higher Levels of Inverter‐Based Generation. ESIG Webinar. Retrieved from https://www.esig.energy/event/webinar-evolution-of-ercots-frequency-control-and-ancillary-services-while-integrating-a-high-share-of-inverter-based-generation/.
Meneguzzo,, F., Ciriminna,, R., Albanese,, L., & Pagliaro,, M. (2015). The great solar boom: A global perspective into the far reaching impact of an unexpected energy revolution. Energy Science %26 Engineering, 3(6), 499–509. https://doi.org/10.1002/ese3.98
Mengelkamp,, E., Staudt,, P., Garttner,, J., & Weinhardt,, C. (2017). Trading on local energy markets: A comparison of market designs and bidding strategies. 2017 14th International Conference on the European Energy Market (EEM), 1–6. https://doi.org/10.1109/EEM.2017.7981938
Milano,, F., Dörfler,, F., Hug,, G., Hill,, D. J., & Verbič,, G. (2018). Foundations and challenges of low‐inertia systems (invited paper). 2018 Power Systems Computation Conference (PSCC), 1–25. https://doi.org/10.23919/PSCC.2018.8450880
Mueller‐Stoffels,, M., Light,, D., Holdmann,, G., Sheets,, B., & Maker,, P. (2013). Gridform Inverter Tests and Assessment. Fairbanks, AK: Alaska Center for Energy and Power Retrieved from http://acep.uaf.edu/media/82424/GFIReport_main.pdf
Muljadi,, E., & Gevorgian,, V. (2012). Understanding Inertial and Frequency Response of Wind Power Plants: Preprint. Retrieved from https://www.nrel.gov/docs/fy12osti/55335.pdf.
Muljadi,, E., Gevorgian,, V., Singh,, M., & Santoso,, S. (2012). Understanding inertial and frequency response of wind power plants. 2012 IEEE Power Electronics and Machines in Wind Applications, 1–8. https://doi.org/10.1109/PEMWA.2012.6316361
Muljadi,, E., Samaan,, N., Gevorgian,, V., Li,, J., & Pasupulati,, S. (2010a). Different factors affecting short circuit behavior of a wind power plant. 2010 IEEE Industry Applications Society Annual Meeting, 1–9. https://doi.org/10.1109/IAS.2010.5616819
Muljadi,, E., Samaan,, N., Gevorgian,, V., Li,, J., & Pasupulati,, S. (2010b). Short circuit current contribution for different wind turbine generator types. IEEE PES General Meeting, 1–8. https://doi.org/10.1109/PES.2010.5589677
Nagarajan,, A. (2018, October 4). Greening the Grid: Best Practices for Grid Codes for Renewable Energy Generators [Webinar]. Retrieved from https://cleanenergysolutions.org/sites/default/files/documents/grid-codes-webinar-oct4.pdf
Nanou,, S. I., Papakonstantinou,, A. G., & Papathanassiou,, S. A. (2015). A generic model of two‐stage grid‐connected PV systems with primary frequency response and inertia emulation. Electric Power Systems Research, 127, 186–196. https://doi.org/10.1016/j.epsr.2015.06.011
NERC and WECC Staff. (2019). April and May 2018 Fault Induced Solar Photovoltaic Resource Interruption Disturbances Report. North American Electric Reliability Corporation (NERC). Retrieved from https://www.nerc.com/pa/rrm/ea/April_May_2018_Fault_Induced_Solar_PV_Resource_Int/April_May_2018_Solar_PV_Disturbance_Report.pdf.
North American Electric Reliability Corporation (NERC). (2018, January 18). EOP‐005‐3 System Restoration from Blackstart Resources. Retrieved from http://www.nerc.com/pa/stand/Pages/ReliabilityStandardsUnitedStates.aspx?jurisdiction=United%20States.
O`Connell,, N., Pinson,, P., Madsen,, H., & O`Malley,, M. (2014). Benefits and challenges of electrical demand response: A critical review. Renewable and Sustainable Energy Reviews, 39, 686–699. https://doi.org/10.1016/j.rser.2014.07.098
O`Sullivan,, K. (2018, February 13). 2017 a record year for installing wind energy capacity in Ireland. The Irish Times. Retrieved from https://www.irishtimes.com/business/energy-and-resources/2017-a-record-year-for-installing-wind-energy-capacity-in-ireland-1.3390680.
P2P‐SmarTest Project. (2015). P2P‐SmarTest Project. Retrieved from https://www.p2psmartest-h2020.eu
Perez,, R., Lauret,, P., Perez,, M., David,, M., Hoff,, T. E., & Kivalov,, S. (2018). Solar resource variability. In R. Perez, (Ed.), Wind Field and Solar Radiation Characterization and Forecasting: A Numerical Approach for Complex Terrain (pp. 149–170). Basel, Switzerland: Springer International Publishing.
Pfeifer,, A., Dobravec,, V., Pavlinek,, L., Krajačić,, G., & Duić,, N. (2018). Integration of renewable energy and demand response technologies in interconnected energy systems. Energy, 161, 447–455. https://doi.org/10.1016/j.energy.2018.07.134
Pierre,, B. J., Elkhatib,, M. E., & Hoke,, A. (2018). PV inverter fault response including momentary cessation, frequency‐watt, and virtual inertia. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), 3660–3665. https://doi.org/10.1109/PVSC.2018.8548176
Plet,, C. A., & Green,, T. C. (2014). Fault response of inverter interfaced distributed generators in grid‐connected applications. Electric Power Systems Research, 106, 21–28. https://doi.org/10.1016/j.epsr.2013.07.013
Rahmann,, C., & Castillo,, A. (2014). Fast frequency response capability of photovoltaic power plants: The necessity of new grid requirements and definitions. Energies, 7(10), 6306–6322. https://doi.org/10.3390/en7106306
Ren,, Y., Suganthan,, P. N., & Srikanth,, N. (2015). Ensemble methods for wind and solar power forecasting—A state‐of‐the‐art review. Renewable and Sustainable Energy Reviews, 50, 82–91. https://doi.org/10.1016/j.rser.2015.04.081
REN21.2018. (2018). Renewables 2018 Global Status Report. Retrieved from http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf.
Rocky Mountain Institute. (2013, October 6). An Island (Tokelau) Powered 100% By Solar Energy. CleanTechnica. Retrieved from https://cleantechnica.com/2013/10/06/an-island-tokelau-powered-100-by-solar-energy/.
Schmidt,, O., Hawkes,, A., Gambhir,, A., & Staffell,, I. (2017). The future cost of electrical energy storage based on experience rates. Nature Energy, 2(8), 1–8. https://doi.org/10.1038/nenergy.2017.110
Sensfuß,, F., Ragwitz,, M., & Genoese,, M. (2008). The merit‐order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086–3094. https://doi.org/10.1016/j.enpol.2008.03.035
Seo,, G.‐S., Colombino,, M., Subotić,, I., Johnson,, B., Groß,, D., & Dörfler,, F. (2018, November 21). Dispatchable Virtual Oscillator Control for Decentralized Inverter‐dominated Power Systems: Analysis and Experiments. 2019 Applied Power Electronics Conference and Expo, Anaheim, CA.
Singhvi,, V., Pourbeik,, P., Bhatt,, N., Brooks,, D., Zhang,, Y., Gevorgian,, V., …, Clark,, K. (2013). Impact of wind active power control strategies on frequency response of an interconnection. 2013 IEEE Power Energy Society General Meeting, 1–5. https://doi.org/10.1109/PESMG.2013.6672868
Sinha,, M., Dörfler,, F., Johnson,, B. B., & Dhople,, S. V. (2017). Uncovering droop control Laws embedded within the nonlinear dynamics of Van der pol oscillators. IEEE Transactions on Control of Network Systems, 4(2), 347–358. https://doi.org/10.1109/TCNS.2015.2503558
SMA Solar Technology. (2011). SMA Multicluster Technology: Technology Brochure 8.1. Retrieved from http://files.sma.de/dl/3491/MULTICLUSTER-AEN112011W.pdf.
Spahic,, E., Varma,, D., Beck,, G., Kuhn,, G., & Hild,, V. (2016). Impact of reduced system inertia on stable power system operation and an overview of possible solutions. 2016 IEEE Power and Energy Society General Meeting (PESGM), 1–5. https://doi.org/10.1109/PESGM.2016.7741714
Steinke,, F., Wolfrum,, P., & Hoffmann,, C. (2013). Grid vs. storage in a 100% renewable Europe. Renewable Energy, 50, 826–832. https://doi.org/10.1016/j.renene.2012.07.044
Strbac,, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426. https://doi.org/10.1016/j.enpol.2008.09.030
Sustainable Energy Authority of Ireland. (2018). Energy in Ireland: 2018 Report. Sustainable Energy Authority of Ireland.
Trong,, M. D., Salamon,, M., & Dogru,, I. (2016, October). Experience with Consumer Communications and Involvement in Smart Grid—With Examples from EcoGrid on Bornholm Summary and Recommendations. Retrieved from: http://www.eu-ecogrid.net/images/Frontpage/WP-4_final-english-summary.pdf.
Trötscher,, T., & Korpås,, M. (2008, January). A power market model for studying the impact of wind power on spot prices. 16th PSCC Conference, Glasgow, 2008.
Utility Dive. (2015, June 19). Texas, Colorado set model for increased renewables integration under Clean Power Plan. Retrieved from https://www.utilitydive.com/news/texas-colorado-set-model-for-increased-renewables-integration-under-clean/400855/.
Vartiainen,, E., Masson,, G., Breyer,, C., Moser,, D., & Medina,, E. R. (2019). Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility‐scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications, 1–15. https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.3189.
VDE. (2019, April 2). Power Generating Plants in the Low Voltage Grid (VDE‐AR‐N 4105). Retrieved from https://www.vde.com/en/fnn/topics/technical-connection-rules/power-generating-plants.
Velaga,, Y. N., Kumaraguru,, P., Singh,, A., Sen,, P. K., & Kroposki,, B. (2019, August 6). 2019 IEEE power and energy society general meeting, Atlanta, Georgia. Retrieved from https://www.osti.gov/biblio/1557083.
WECC Renewable Energy Modeling Task Force. (2014a). WECC solar plant dynamic modeling guidelines. Western Electricity Coordinating Council. Retrieved from https://www.wecc.biz/Reliability/WECC%20Solar%20Plant%20Dynamic%20Modeling%20Guidelines.pdf.
WECC Renewable Energy Modeling Task Force. (2014b). WECC wind power plant dynamic modeling guide. Western Electricity Coordinating Council. Retrieved from https://www.wecc.biz/Reliability/WECC%20Wind%20Plant%20Dynamic%20Modeling%20Guidelines.pdf.
Winternheimer,, S., Ames,, M., & Igel,, M. (2015). The challenge to replace synchronous generators by inverter based distributed generation systems. 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 1–6. https://doi.org/10.1109/PEDG.2015.7223007
Zarina,, P. P., Mishra,, S., & Sekhar,, P. C. (2012). Deriving inertial response from a non‐inertial PV system for frequency regulation. 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1–5. https://doi.org/10.1109/PEDES.2012.6484409
Zhang,, Y. C., Gevorgian,, V., Ela,, E., Singhvi,, V., & Pourbeik,, P. (2013, October 22). Role of Wind Power in Primary Frequency Response of an Interconnection: Preprint. International Workshop on Large‐Scale Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants. Retrieved from https://www.nrel.gov/docs/fy13osti/58995.pdf.