Bagheria,, N., Aghaeia,, A., Ghotbib,, M. Y., Marzbanrada,, E., Vlachopoulos,, N., Häggman,, L., … Kuleszaf,, P. J. (2014). Combination of asymmetric supercapacitor utilizing activated carbon and nickel oxide with cobalt polypyridyl‐based dye‐sensitized solar cell. Electrochimica Acta, 143, 390–397. https://doi.org/10.1016/j.electacta.2014.07.125
Beaujuge,, P. M., & Fréchet,, J. M. J. (2011). Molecular design and ordering effects in π‐functional materials for transistor and solar cell. Application Journal of the American Chemical Society, 133, 20009. https://doi.org/10.1021/ja2073643
Brabec,, C. J., Sariciftci,, N. S., & Hummelen,, J. C. (2001). Plastic solar cells. Advanced Functional Materials, 11, 15–26. https://doi.org/10.1002/1616-3028(200102)11:1%3C15::AID-ADFM15%3E3.0.CO;2-A
Cannavale,, A., Eperon,, G. E., Cossari,, P., Abate,, A., Snaith,, H. J., & Gigli,, G. (2015). Perovskite photovoltachromic cells for building integration. Energy %26 Environmental Science, 8, 1578–1584. https://doi.org/10.1039/C5EE00896D
Chai,, Z., Zhang,, N., Sun,, P., Huang,, Zhao,, C., Fan,, H. J., … Mai,, W. (2016). Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano, 10, 9201–9207. https://doi.org/10.1021/acsnano.6b05293
Chao,, L., Shan,, C., Tian,, Z., Song,, Y., Yu,, L., Lu,, C., … Liu,, Z. (2019). Flexible perovskite solar cell‐driven photo‐rechargeable lithium‐ion capacitor for self‐powered wearable strain sensors. Nano Energy, 60, 247–256. https://doi.org/10.1016/j.nanoen.2019.03.061
Chen,, H., Xia,, Y., Wu,, B., Liu,, F., Niu,, T., Chao,, L., … Huang,, W. (2019). Efficient hybrid solar cells based on meso‐superstructured organometal halide perovskites. Nano Energy, 56, 373. https://doi.org/10.1126/science.1228604
Chen,, T., Qiu,, L., Kia,, H. G., Yang,, Z., & Peng,, H. (2012). Designing aligned inorganic nanotubes at the electrode interface: Towards highly efficient photovoltaic wires. Advance Materials, 24, 4623. https://doi.org/10.1002/adma.201201893
Chen,, T., Qiu,, L., Yang,, Z., Cai,, Z., Ren,, J., Li,, H., … Peng,, H. (2012). An integrated “energy wire” for both photoelectric conversion and energy storage. Angewandte Chemie International Edition, 51, 11977–11980. https://doi.org/10.1002/anie.201207023
Chen,, X., Sun,, H., Yang,, Z., Guan,, G., Zhang,, Z., Qiu,, L., & Peng,, H. (2014). A novel “energy fiber” by coaxially integrating dye‐sensitized solar cell and electrochemical capacitor. Journal Material Chemistry A, 2, 1897–1902. https://doi.org/10.1039/C3TA13712K
Cheng,, Y.‐J., Yang,, S.‐H., & Hsu,, C.‐S. (2009). Synthesis of conjugated polymers for organic solar cell applications. Chemical Review, 109, 5868. https://doi.org/10.1021/cr900182s
Chien,, C. T., Hiralal,, P., Wang,, D. Y., Huang,, I.‐S., Chen,, C. C., Chen,, C. W., & Amaratunga,, G. A. J. (2015). Graphene‐based integrated photovoltaic energy harvesting/storage device. Small, 11(24), 2929–2937. https://doi.org/10.1002/smll.201403383
Chih‐Yu,, H., Hsin‐Wei,, C., Kun‐Mu,, L., Chih‐Wei,, H., & Kuo‐Chuan,, H. (2010). A dye‐sensitized photo‐supercapacitor based on PProDOT‐Et2 thick films. Journal of Power Sources, 195, 6232–6238. https://doi.org/10.1016/j.jpowsour.2009.12.099
Cohn,, A. P., Erwin,, W. R., Share,, K., Oakes,, L., Westover,, A. S., Carter,, R. E., … Pint,, C. L. (2015). All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Letters, 15(4), 2727–2731. https://doi.org/10.1021/acs.nanolett.5b00563
Conway,, B. E. (1991). Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of The Electrochemical Society, 138, 6. https://doi.org/10.1149/1.2085829
Conway,, B. E., Birss,, V., & Wojtowicz,, J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 66, 1–14. https://doi.org/10.1016/S0378-7753(96)02474-3
Conway,, B. E., Pell,, W. G., & Liu,, T. C. (1997). Diagnostic analyses for mechanisms of self‐discharge of electrochemical capacitors and batteries. Journal of Power Sources, 65, 53–59. https://doi.org/10.1016/S0378-7753(97)02468-3
Das,, A., Deshagani,, S., Kumar,, R., & Deepa,, M. (2018). Bifunctional photo‐supercapacitor with a new architecture converts and stores solar energy as charge. ACS Applied Materials %26 Interfaces, 10, 35932–35945. https://doi.org/10.1021/acsami.8b11399
Das,, A., Deshagania,, S., Ghosal,, P., & Deepaa,, M. (2020). Redox active and electrically conducting cobalt telluride nanorods/poly(1‐aminoanthraquinone) composite and photoactive Rose Bengal dye based photo‐supercapacitor. Applied Materials Today, 19, 100592. https://doi.org/10.1016/j.apmt.2020.100592
Davis,, M. A., & Andreas,, H. A. (2018). Identification and isolation of carbon oxidation and charge redistribution as self‐discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes. Carbon, 139, 299–308. https://doi.org/10.1016/j.carbon.2018.06.065
Dong,, P., Rodrigues,, M.‐T. F., Zhang,, J., Borges,, R. S., Kalaga,, K., Reddy,, R. L. M., … Lou,, J. (2017). A flexible solar cell/supercapacitor integrated energy device. Nano Energy, 42, 181–186. https://doi.org/10.1016/j.nanoen.2017.10.035
Dreos,, A., Wang,, Z., Udmark,, Z., Ström,, A., Erhart,, P., Börjesson,, K., … Moth‐Poulsen,, K. (2018). Liquid norbornadiene photoswitches for solar energy storage. Advance Energy Materials, 8, 1703401. https://doi.org/10.1002/aenm.201703401
Du,, P., Hu,, X., Yi,, C., Liu,, H. C., Liu,, P., Zhang,, H.‐L., & Gong,, X. (2015). Self‐powered electronics by integration of flexible solid‐state graphene‐based supercapacitors with high performance perovskite hybrid solar cells. Advanced Functional Materials., 25, 2420–2427. https://doi.org/10.1002/adfm.201500335
Duan,, J., Zhang,, H., Tang,, Q., He,, B., & Yu,, L. (2015). Recent advances in critical materials for quantum dot‐sensitized solar cells: A review. Journal of Material Chemistry A, 3, 17497. https://doi.org/10.1039/C5TA03280F
Fang,, H. J., Zheng,, P. Y., Ma,, R., Xu,, C., Yang,, G. Y., Wang,, Q., & Wang,, H. (2018). Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Material Horizons, 5, 1000–1007. https://doi.org/10.1002/adfm.201808911
Freitag,, M., Teuscher,, J., Saygili,, Y., Zhang,, X., Giordano,, F., Liska,, P., … Hagfeldt,, A. (2017). Dye‐sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 11, 372–378. https://doi.org/10.1038/NPHOTON.2017.60
Fu,, Y., Wu,, H., Ye,, S., Cai,, X., Yu,, X., Hou,, S., … Zou,, D. (2013). Integrated power fiber for energy conversion and storage system. Energy and Environmental Sciences, 6, 805–812. https://doi.org/10.1039/C3EE23970E
Gao,, P., Yusoff,, A. R. B. M., & Nazeeruddin,, M. K. (2018). Dimensionality engineering of hybrid halide perovskite light absorbers. Nature Communications, 9, 5028. https://doi.org/10.1038/s41467-018-07382-9
Gaudiana,, R. (2010). Third‐generation photovoltaic technology − The potential for low‐cost solar energy conversion. The Journal of Physical Chemistry Letters, 1, 1288. https://doi.org/10.1021/jz100290q
Gorni,, G., Zama,, I., Martelli,, C., & Armiento,, L. (2019). Fabrication of dye‐sensitized solar modules based on a prototyping pilot line and their integration into energy storage microsystems. Journal of European Ceramic Society, 39, 85–91. https://doi.org/10.1016/j.jeurceramsoc.2017.11.023
Graetzel,, M. (2009). Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research, 42, 1788. https://doi.org/10.1021/ar900141y
Green,, M. A., Emery,, K., Hishikawa,, Y., Warta,, W., Dunlop,, E. D., Levi,, D. H., & Ho‐Baillie,, A. W. Y. (2017). Solar cell efficiency tables (version 50). Progress in Photovoltaics: Research and Applications, 5, 3. https://doi.org/10.1002/pip.2909
Gui,, Y. Y., Ai,, F. X., Qian,, J. F., Cao,, Y. L., Li,, G. R., Gao,, X. P., & Yang,, H. X. (2018). A solar rechargeable battery based on the sodium ion storage mechanism with Fe2(MoO4)3 microspheres as anode materials. Journal of Material Chemistry A, 6, 10627. https://doi.org/10.1039/C8TA04015J
Gurung,, A., Chen,, K., Khan,, R., Abdulkarim,, S. S., Varnekar,, G., Pathak,, R., … Qiao,, Q. (2017). Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster. Advanced Energy Materials, 7, 1602105. https://doi.org/10.1002/aenm.201602105
Hagfeldt,, A., Boschloo,, G., Sun,, L. C., Kloo,, L., & Pettersson,, H. (2010). Dye‐sensitized solar cells. Chemical Review, 110, 6595–6663. https://doi.org/10.1021/cr900356p
Hao,, C., Wang,, X., Yin,, Y., & You,, Z. (2016). Analysis of charge redistribution during self‐discharge of double‐layer supercapacitors. Journal Electronic Materials, 45, 2160–2171. https://doi.org/10.1007/s11664-016-4357-0
Hao,, S., Jiang,, Y., Qiu,, L., You,, X., Yang,, J., Fu,, X., … Penga,, H. (2015). Energy harvesting and storage devices fused into various patterns. Journal of Material Chemistry A, 3, 14977–14984. https://doi.org/10.1039/C5TA03235K
Hardin,, B. E., Snaith,, H. J., McGehee,, M. D., The renaissance of dye‐sensitized solar cells. (2012) Nature Photonics, 6, 162–169. https://doi.org/10.1038/nphoton.2012.22
He,, Z. C., Xiao,, B., Liu,, F., Wu,, H. B., Yang,, Y. L., Xiao,, S., … Cao,, Y. (2015). Single‐junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 9, 174–179. https://doi.org/10.1038/nphoton.2015.6
Helgesen,, M., Sondergaard,, R., & Krebs,, F. C. (2010). Advanced materials and processes for polymer solar cell devices. Journal of Materials Chemistry, 20, 36–60. https://doi.org/10.1039/B913168J
Ike,, I. S., Iyuke,, S., & Sigalas,, I. (2016). Understanding performance limitation and suppression of leakage current or self‐discharge in electrochemical capacitors: A review. Physical Chemistry Chemical Physics, 18, 661–680. https://doi.org/10.1039/C5CP05459A
Jeon,, N. J., Noh,, J. H., Yang,, W. S., Kim,, Y. C., Ryu,, S., Seo,, J., & Seok,, S. I. (2015). Compositional engineering of perovskite materials for high‐performance solar cells. Nature, 517, 476–480. https://doi.org/10.1038/nature14133
Jin,, T. Y., Wang,, Li., Wang,, H.‐Q., Chen,, Z.‐Z., Q, Y.‐Q., & Xie,, H.‐M. (2017). Spirooxazine molecular switches with nonlinear optical responses as selective cation sensors https://doi.org/10.1039/C6RA25478K (Paper) RSC Adv., 7, 642‐650
Jiang,, H., Li,, C., Sun,, T., & Ma,, J. (2012). A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale, 4, 807–812. https://doi.org/10.1039/C1NR11542A
Katan,, C., Mercier,, N., & Even,, J. (2019). Quantum and dielectric confinement effects in lower‐dimensional hybrid perovskite semiconductors. Chemical Reviews, 119(5), 3140–3192. https://doi.org/10.1021/acs.chemrev.8b00417
Khatun,, F., Thakur,, P., Kool,, A., Roy,, S., Nur Amin Hoque,, N. A., Biswas,, P., … Das,, S. (2019). Photo‐rechargeable organic–inorganic dye‐integrated polymeric power cell with superior performance and durability. Langmuir, 35(19), 6346–6355. https://doi.org/10.1021/acs.langmuir.9b00622
Kim,, J. W., & Myoung,, J. M. (2019). Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel‐based viologens by multiple patterning. Advance Functional Materials., 29, 9. https://doi.org/10.1002/adfm.201808911
Kouhnavard,, M., Ikeda,, S., Ludin,, N. A., Ahmad Khairudin,, N. B., Ghaffari,, B. V., Mat‐Teridi,, M. A., … Sopian,, K. (2014). A review of semiconductor materials as sensitizers for quantum dot‐sensitized solar cells. Renewable and Sustainable Energy Reviews, 37, 397. https://doi.org/10.1016/j.rser.2014.05.023
Krebs,, F. C., Tromholt,, T., & Jørgensen,, M. (2010). Upscaling of polymer solar cell fabrication using full roll‐to‐roll processing. Nanoscale, 2010(2), 873. https://doi.org/10.1039/b9nr00430k
Krekiehn,, N. R., Müller,, M., Jung,, M., Ulrich,, S., Herges,, R., & Magnussen,, O. M. (2015). UV/Vis spectroscopy studies of the photoisomerization kinetics in self‐assembled azobenzene‐containing adlayers. Langmuir, 31, 8362–8370. https://doi.org/10.1021/acs.langmuir.5b01645
Kucharski,, T. J., Ferralis,, N., Kolpak,, A. M., Zheng,, J. O., Nocera,, D. G., & Grossman,, J. C. (2014). Templated assembly of photoswitches significantly increases the energy‐storage capacity of solar thermal fuels. Nature Chemistry, 6, 441. https://doi.org/10.1038/nchem.1918
Kulbak,, M., Cahen,, D., & Hodes,, G. (2015). How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. The Journal of Physical Chemistry Letters, 6, 2452–2456. https://doi.org/10.1021/acs.jpclett.5b00968
Lau,, S. C., Lim,, H. N., Ravoof,, T. B. S. A., Yaacob,, M. H., Grant,, D. M., MacKenzie,, R. C. I., … Huang,, N. M. (2017). A three‐electrode integrated photo‐supercapacitor utilizing graphene‐based intermediate bifunctional electrode. Electrochimica Acta, 238, 178–184. https://doi.org/10.1016/j.electacta.2017.04.003
Law,, M., Greene,, L. E., Johnson,, J. C., Saykally,, R., & Yang,, P. D. (2005). Nanowire dye‐sensitized solar cells. Nature Materials, 4, 455–459. https://doi.org/10.1038/nmat1387
Lee,, J. K., Ma,, W. L., Brabec,, C. J., Yuen,, J., Moon,, J. S., Kim,, J. Y., … Heeger,, A. J. (2008). Processing additives for improved efficiency from bulk heterojunction solar cells. Journal of the American Chemical Society, 130, 3619. https://doi.org/10.1021/ja710079w
Lee,, M. M., Teuscher,, J., Miyasaka,, T., Murakami,, T. N., & Snaith,, H. J. (2012). Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 338, 643–647. https://doi.org/10.1126/science.1228604
Lee,, Y. H., Kim,, J. S., Noh,, J., Lee,, I., Kim,, H. J., Choi,, S., … Choi,, J. W. (2013). Wearable textile battery rechargeable by solar energy. Nano Letters, 13, 5753–5761. https://doi.org/10.1021/nl403860k
Li,, C., Islam,, M. M., Moore,, J., Sleppy,, J., Morrison,, C., Konstantinov,, K., … Thomas,, J. (2016). Wearable energy‐smart ribbons for synchronous energy harvest and storage. Nature Communications, 7, 13319. https://doi.org/10.1038/ncomms13319
Li,, C., Tscheuschner,, S., Paulus,, F., Hopkinson,, P. E., Kiessling,, J., Kohler,, A., … Huettner,, S. (2016). Iodine migration and its effect on hysteresis in perovskite solar cells. Advanced Materials, 28, 2446. https://doi.org/10.1002/adma.201503832
Li,, G., Zhu,, R., & Yang,, Y. (2012). Polymer solar cells. Nature Photonics, 6, 153–161. https://doi.org/10.1038/nphoton.2012.11
Li,, H., Zhao,, Q., Wang,, W., Dong,, H., Xu,, D., Zou,, G., … Yu,, D. (2013). Novel planar‐structure electrochemical devices for highly flexible semitransparent power generation/storage sources. Nano Letter, 13, 1271. https://doi.org/10.1021/nl4000079
Liang,, J., Zhu,, G., Wang,, C., Wang,, Y., Zhu,, H., Hu,, Y., … Liu,, J. (2016). MoS2‐based all‐purpose fibrous electrode and self‐powering energy fiber for efficient energy harvesting and storage. Advanced Energy Materials, 7, 601208. https://doi.org/10.1002/aenm.201601208
Liang,, J., Zhu,, G., Wang,, C., Zhao,, P., Wang,, Y., Hu,, Y., … Jin,, Z. (2018). An all‐inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy, 52, 239–245. https://doi.org/10.1016/j.nanoen.2018.07.060
Liao,, S., Zong,, X., Seger,, B., Pedersen,, T., Yao,, T., Ding,, C., … Li,, C. (2016). Integrating a dual‐silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nature Communications, 7, 11474. https://doi.org/10.1038/ncomms11474
Lin,, Q., Armin,, A., Burn,, P. L., & Meredith,, P. (2016). Organohalide perovskites for solar energy conversion. Accounts of Chemical Research, 49, 545. https://doi.org/10.1021/acs.accounts.5b00483
Liu,, H., Li,, M., Kaner,, R. B., Chen,, S., & Pei,, Q. (2018). Monolithically integrated self‐charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser‐scribed graphene supercapacitor. ACS Applied Material Interfaces, 1018, 15609–15615. https://doi.org/10.1021/acsami.8b00014
Liu,, L., Shen,, B., Jiang,, D., Guo,, R., Kong,, L., & Yan,, X. (2016). Watchband‐like supercapacitors with body temperature inducible shape memory ability. Advanced Energy Materials, 6, 1600763. https://doi.org/10.1002/aenm.201600763
Liu,, M. X., Gan,, L. H., Li,, Y., Zhu,, D.‐Z., Xu,, Z.‐J., & Chen,, L. W. (2014). Synthesis and electrochemical performance of hierarchical porous carbons with 3D open‐cell structure based on nano‐silica embedded emulsion‐templated polymerization. Chinese Chemical Letters, 25, 897. https://doi.org/10.1016/j.cclet.2014.01.010
Liu,, M. Z., Johnston,, M. B., & Snaith,, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395–398. https://doi.org/10.1038/nature12509
Liu,, P., Cao,, Y. L., Li,, G. R., Gao,, X. P., Ai,, X. P., & Yang,, H. X. (2013). A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem, 6, 802. https://doi.org/10.1002/cssc.201200962
Liu,, R., Liu,, C., & Fan,, S. (2017). A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge. Journal of Material Chemistry A, 5, 23078. https://doi.org/10.1039/C7TA06297D
Liu,, R. Y., Lee,, S. T., & Sun,, B. Q. (2014). 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Advanced Materials, 26, 6007–6012. https://doi.org/10.1002/adma.201402076
Liu,, T., Pell,, W. G., & Conway,, B. E. (1997). Self‐discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochimica Acta, 42, 3541–3552. https://doi.org/10.1016/S0013-4686(97)81190-5
Liu,, W.‐W., Feng,, Y.‐Q., Yan,, X.‐B., Chen,, J.‐T., & Xue,, Q.‐J. (2013). Superior Micro‐Supercapacitors Based on Graphene Quantum Dots. Advanced Functional Materials, 23, 4111. https://doi.org/10.1002/adfm.201203771
Liu,, Z., Zhong,, Y., Sun,, B., Liu,, X., Han,, J., Shi,, T., … Liao,, G. (2017). Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Applied Material Interfaces, 9, 22361. https://doi.org/10.1021/acsami.7b01471
Liu, R, Masahito,, T., Ailong,, L., Daishi,, I., Daisuke,, H., Kilho,, Y., … Takao,, S., (2020). An Efficient Ultra‐Flexible Photo‐Charging System Integrating Organic Photovoltaics and Supercapacitors Adv. Energy Mater. 2020, 2000523‐2000530. https://doi.org/10.1002/aenm.202000523
Mathew,, S., Yella,, A., Gao,, P., Humphry‐Baker,, R., Curchod,, B. F., Ashari‐Astani,, N., … Gratzel,, M. (2014). Dye‐sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6, 242. https://doi.org/10.1038/nchem.1861
Matsui,, T., Yamamoto,, T., Nishihara,, T., Morisawa,, R., Yokoyama,, T., Sekiguchi,, T., & Negami,, T. (2019). Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85°C/85% 1000 h stability. Advanced Materials, 31, 1806823. https://doi.org/10.1002/adma.201806823
McCulloch,, W. D., Yu,, M. Z., & Wu,, Y. Y. (2016). pH‐tuning a solar redox flow battery for integrated energy conversion and storage. ACS Energy Letter, 1, 578. https://doi.org/10.1021/acsenergylett.6b00296
Meng,, L., You,, J., Guo,, T. F., & Yang,, Y. (2016). Recent advances in the inverted planar structure of perovskite solar cells. Accounts of Chemical Research, 49, 155. https://doi.org/10.1021/acs.accounts.5b00404
Miyasaka,, T., & Murakami,, T. N. (2004). The photocapacitor: An efficient self‐charging capacitor for direct storage of solar energy. Applied Physics Letter, 85(17), 3932–3934. https://doi.org/10.1063/1.1810630
Murakami,, T. N., Kawashima,, N., & Miyasaka,, T. (2005). A high‐voltage dye‐sensitized photocapacitor of a three‐electrode system. Chemical Communication, 26, 3346–3348. https://doi.org/10.1039/B503122B
Narayanan,, R., Naresh Kumar,, P., Melepurath,, D., & Avanish,, K. S. (2015). Combining energy conversion and storage: A solar powered supercapacitor. Electrochimica Acta, 178, 113. https://doi.org/10.1016/j.electacta.2015.07.121
Nazeeruddin,, M. K., Baranoff,, E., & Grätzel,, M. (2011). Dye‐sensitized solar cells: A brief overview Sol. Energy, 85, 1172. https://doi.org/10.1016/j.solener.2011.01.018
Ng,, C. H., Lim,, H. N., Shuzi,, O., Zainal,, H. Z., Shafie,, S., Lee,, H. W., & Huang,, N. M. (2018). Cesium lead halide inorganic‐based perovskite‐sensitized solar cell for photo‐supercapacitor application under high humidity condition. ACS Applied Energy Materials, 12, 692–699. https://doi.org/10.1021/acsaem.7b00103
Nie,, W. Y., Tsai,, H., Asadpour,, R., Blancon,, J.‐C., Neukirch,, A. J., Gupta,, G., … Mohite,, A. D. (2015). High‐efficiency solution‐processed perovskite solar cells with millimeter‐scale grains. Science, 347, 522–525. https://doi.org/10.1126/science.aaa0472
Nozik,, A. J. (2008). Multiple exciton generation in semiconductor quantum dots. Chemical Physics Letters, 457, 3–11. https://doi.org/10.1016/j.cplett.2008.03.094
NREL, (2020). Best research‐cell efficiency chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf
O`Regan,, B., & Grätzel,, M. (1991). A low‐cost, high‐efficiency solar cell based on dye‐sensitized colloidal TiO2 films. Nature, 353, 737–740. https://doi.org/10.1038/353737a0
Pan,, S., Yang,, Z., Chen,, P., Deng,, J., Li,, H., Peng,, H., & Angew,. (2014). Wearable solar cells by stacking textile electrodes. Angewandte Chemie International Edition, 53, 6110. https://doi.org/10.1002/anie.201402561
Park,, N., Grazel,, M., Miyasaka,, T., Zhu,, K., & Emery,, K. (2016). Towards stable and commercially available perovskite solar cells. Nature Energy, 1, 16152. https://doi.org/10.1038/nenergy.2016.152
Pazoki,, M., Wolf,, M. J., Edvinsson,, T., & Kullgren,, J. (2017). Vacancy dipole interactions and the correlation with monovalent cation dependent ion movement in lead halide perovskite solar cell materials. Nano Energy, 38, 537. https://doi.org/10.1016/j.nanoen.2017.06.024
Podjaski,, F., Kröger,, J., & Lotsch,, B. V. (2018). Toward an aqueous solar battery: Direct electrochemical storage of solar energy in carbon nitrides. Advanced Materials, 30, 1705477. https://doi.org/10.1002/adma.201705477
Qiu,, J., Xia,, Y., Chen,, Y., & Huang,, W. (2019). Management of crystallization kinetics for efficient and stable low‐dimensional Ruddlesden–Popper (LDRP) lead‐free perovskite solar cells. Advance Sciences, 6, 1800793. https://doi.org/10.1002/advs.201800793
Qiu,, J., Zheng,, Y., Xia,, Y., Chao,, L., Chen,, Y., & Huang,, W. (2018). Rapid crystallization for efficient 2D Ruddlesden–Popper (2DRP) perovskite solar cells. Advanced Functional Materials, 29, 1806831. https://doi.org/10.1002/adfm.201806831
Roduner,, E. (2006). Size matters: Why nanomaterials are different. Chemical Society Review, 35, 583–592. https://doi.org/10.1039/B502142C
Roya,, A., Majumdar,, P., Sengupta,, P., Kundu,, S., Shinde,, S., Jha,, A., … Saha,, H. (2020). A photoelectrochemical supercapacitor based on a single BiVO4‐RGO bilayer photocapacitive electrode. Electrochimica Acta, 329, 135170. https://doi.org/10.1016/j.electacta.2019.135170
Ryu,, K. S., Kim,, K. M., Park,, N. G., Park,, Y. J., & Chang,, S. H. (2002). Symmetric redox supercapacitor with conducting polyaniline electrodes. Journal of Power Sources, 103, 305–309. https://doi.org/10.1016/S0378-7753(01)00862-X
Scalia,, A., Bella,, F., Lamberti,, A., Gerbaldi,, C., & Tresso,, E. (2019). Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV‐crosslinking enables solid‐state in plane integration of energy conversion and storage devices. Energy, 166, 789–795. https://doi.org/10.1016/j.energy.2018.10.162
Scalia,, A., Varzi,, A., Lamberti,, A., Jacob,, T., & Passerini,, S. (2018). Portable high voltage integrated harvesting‐storage device employing dye‐sensitized solar module and all‐solid‐state electrochemical double layer capacitor. Frontiers of Chemistry, 6, 443. https://doi.org/10.3389/fchem.2018.00443
Schuschke,, C., Hohner,, C., Jevric,, M., Petersen,, A. U., Wang,, Z., Schwarz,, M., … Libuda,, J. (2019). Solar energy storage at an atomically defined organic‐oxide hybrid interface. Nature Communications, 10, 2384. https://doi.org/10.1038/s41467-019-10263-4
Shi,, Z., Guo,, J., Chen,, Y., Li,, Q., Pan,, Y., Zhang,, H., … Huang,, W. (2017). Lead‐free organic–inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives. Advance Materials, 29, 1605005. https://doi.org/10.1002/adma.201605005
Simon,, P., & Gogotsi,, Y. (2009). Materials for electrochemical capacitors. Nanoscience and Technology, 6, 320–329. https://doi.org/10.1142/9789814287005_0033
Skunik,, N. M., Grzejszczyk,, K., Kulesza,, P. J., Yang,, L., Vlachopoulos,, N., Häggman,, L., … Hagfeldt,, A. (2013). Integration of solid‐state dye‐sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. Journal of Power Sources, 234, 91–99. https://doi.org/10.1016/j.jpowsour.2013.01.101
Sun,, J., Li,, Y., Sun,, J., Zhu,, Z., Zhai,, Y., & Dong,, S. (2019). Reversible self‐powered fluorescent electrochromic windows driven by perovskite solar cells. Chemical Communications, 55, 12060–12063. https://doi.org/10.1039/C9CC05779J
Tang,, J., Wan,, G. J., Shrestha,, L. K., Hossain,, M. S. A., Alothman,, Z. A., Yamauch,, I. Y., & Ariga,, K. (2017). Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor. ACS Applied Material Interfaces, 9, 18986–18993.
Tarascon,, J. M., & Armand,, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359. https://doi.org/10.1038/35104644
Tsai,, H., Nie,, W., Blancon,, J. C., Stoumpos,, C. C., Asadpour,, R., Harutyunyan,, B., … Kanatzidis,, M. G. (2016). High‐efficiency two‐dimensional Ruddlesden–Popper perovskite solar cells. Nature, 536, 312. https://doi.org/10.1038/nature18306
Wang,, H., Gao,, J., Zhu,, Ma,, J.‐Y., Zhou,, H., Xiao,, J., & Wu,, M. (2020). Design bifunctional nitrogen doped flexible carbon sphere electrode for dye‐sensitized solar cell and supercapacitor. Electrochimica Acta, 334, 135582. https://doi.org/10.1016/j.electacta.2019.135582
Wang,, H., Liu,, J., Chen,, Z., Chen,, S., Sum,, T. C., Lin,, J., & Shen,, Z. X. (2017). Synergistic capacitive behavior between polyaniline and carbon black. Electrochimica Acta, 230, 236–244. https://doi.org/10.1016/j.electacta.2017.01.164
Wang,, H., Zhou,, H., Gao,, M., Zhu,, Y., Liu,, H., Gao,, L., & Wu,, M. (2019). Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes. Electrochimica Acta, 298, 552–560.
Wang,, R., Lang,, J., Liu,, Y., Lin,, Z., & Yan,, X. (2015). Ultra‐small, size‐controlled Ni(OH)2 nanoparticles: Elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Materials, 7, e183. https://doi.org/10.1038/am.2015.42
Wang,, Y., Feng,, L., Miao,, X., Li,, Z., Wang,, J., & Deng,, X. (2019). Multifunctional energy devices caused by ionic behaviors in perovskite polymer hybrid films. Synthetic Metals, 250, 31–34. https://doi.org/10.1016/j.synthmet.2019.02.009
Wang,, Z., Cheng,, J., Huang,, H., & Wang,, B. (2019). Flexible self‐powered fiber‐shaped photocapacitors with ultralong cyclelife and total energy efficiency of 5.1%. Energy Storage Materials, 24, 255–264. https://doi.org/10.1016/j.ensm.2019.08.011
Wang,, Z., Roffey,, A., Losantos,, R., Lennartson,, A., Jevric,, M., Petersen,, A. U., … Poulsen,, K. M. (2019). Macroscopic heat release in a molecular solar thermal energy storage system. Energy %26 Environmental Sciences, 12, 187–193. https://doi.org/10.1039/C8EE01011K
Wang,, Z., Shi,, Z., Li,, T., Chen,, Y., & Huang,, W. (2017). Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 56, 1190. https://doi.org/10.1002/anie.201603694
Wee,, G., Salim,, T., Lam,, Y. M., Mhaisalkar,, S. G., & Srinivasan,, M. (2011). Printable photo‐supercapacitor using single‐walled carbon nanotubes. Energy Environenal Sciences, 4, 413. https://doi.org/10.1039/C0EE00296H
Wen,, Z., Yeh,, M.‐H., Guo,, H., Wang,, J., Zi,, Y., Xu,, W., … Wang,, Z. L. (2016). Self‐powered textile for wearable electronics by hybridizing fiber‐shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2, e1600097. https://doi.org/10.1126/sciadv.1600097
Wu,, F., Pathak,, R., Chen,, K., Wang,, G., Bahrami,, B., Zhang,, W. H., & Qiao,, Q. (2018). Bias‐dependent normal and inverted J–V hysteresis in perovskite solar cells. ACS Energy Letters, 3, 2457. https://doi.org/10.1021/acsami.8b07298
Wu,, H., Geng,, J., Wang,, Y., Wang,, Y., Peng,, Z., & Zheng,, G. (2014). Bias‐free, solar‐charged electric double‐layer capacitors. Nanoscale, 6, 15316–15320. https://doi.org/10.1039/C4NR05628K
Wu,, J. J., Hsieh,, M. D., Liao,, W. P., Wu,, W. T., & Chen,, J.‐S. (2009). Fast‐switching photovoltachromic cells with tunable transmittance. ACS Nano, 3, 2297–2303. https://doi.org/10.1021/nn900428s
Wu,, M., Lin,, Y., Guo,, H., Li,, W., Wang,, Y., & Lin,, X. (2015). Design a novel kind of open‐ended carbon sphere for a highly effective counter electrode catalyst in dye‐sensitized solar cells. Nano Energy, 11, 540–549. https://doi.org/10.1016/j.nanoen.2014.11.032
Xiao,, M., Huang,, F., Huang,, W., Dkhissi,, Y., Zhu,, Y., Etheridge,, J., … Spiccia,, L. (2014). A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie International Edition, 126, 10056–10061. https://doi.org/10.1002/ange.201405334
Xiao,, Y., Long,, C., Zheng,, M.‐T., Dong,, H. W., Lei,, B.‐F., Zhang,, H. R., & Liu,, Y. L. (2014). High‐capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors. Chinese Chemical Letters, 25, 865. https://doi.org/10.1016/j.cclet.2014.05.004
Xu,, J., Chen,, Y., & Dai,, L. (2015). Efficiently photo‐charging lithium‐ion battery by perovskite solar cell. Nature Communications, 6, 8103. https://doi.org/10.1038/ncomms9103
Xu,, J., Ku,, Z., Zhang,, Z., Chao,, D., & Fan,, Y. J. (2016). Integrated Photo‐Supercapacitor Based on PEDOT Modified Printable Perovskite Solar Cell. Advanced Material Technology, 1(5), 1600074. https://doi.org/10.1002/admt.201600074
Xu,, J., Wu,, H., Lu,, L., Leung,, S.‐F., Chen,, D., Chen,, X., … Li,, D. (2014). Integrated photosupercapacitor based on bi‐polar TiO2 nanotube arrays with selective one‐side plasma‐assisted hydrogenation. Advanced Functional Materials, 24(13), 1840–1846. https://doi.org/10.1002/adfm.201303042
Xu,, Z., Li,, W., Huang,, J., Guo,, X., Liu,, Q., Yu,, R., … Liu,, X. (2019). Flexible, controllable and angle‐independent photoelectrochromic display enabled by smart sunlight management. Nano Energy, 63, 103830. https://doi.org/10.1016/j.nanoen.2019.06.026
Yan,, N. F., Li,, G. R., & Gao,, X. P. (2014). Electroactive organic compounds as anode‐active materials for solar rechargeable redox flow battery in dual‐phase electrolytes. Journal of Electrochemical Society, 161, 736. https://doi.org/10.1149/2.065405jes
Yang,, Z., Deng,, J., Sun,, H., Ren,, J., Pan,, S., & Peng,, H. (2014). Self‐powered energy fiber: Energy conversion in the sheath and storage in the core. Advanced Materials, 26, 7038–7042. https://doi.org/10.1002/adma.201401972
Yao,, Y., Lv,, T., Li,, N., Chen,, Z., Zhang,, C., & Chen,, T. (2020). Selected functionalization of continuous graphene fibers for integrated energy conversion and storage. Science Bulletin, 65(6), 486–495. https://doi.org/10.1016/j.scib.2019.11.013
Ye,, M., Hong,, X., Zhang,, F., & Liu,, X. (2016). Recent advancements in perovskite solar cells: Flexibility, stability and large scale. Journal of Material Chemistry A, 4, 6755. https://doi.org/10.1039/C5TA09661H
Yella,, A., Lee,, H., Tsao,, H., Yi,, C., Chandiran,, A., Nazeeruddin,, M., … Gratzel,, M. (2011). Porphyrin‐sensitized solar cells with cobalt (II/III)‐based redox electrolyte exceed 12 percent efficiency. Science, 334, 629. https://doi.org/10.1126/science.1209688
Yuna,, J., Songa,, C., Leea,, H., Parka,, H., Jeonga,, Y. R., Kima,, J. W., … Haa,, J. S. (2018). Stretchable array of high‐performance micro‐supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy, 49, 644–654. https://doi.org/10.1016/j.nanoen.2018.05.017
Yusoff,, A. R. B. M., Gao,, P., & Nazeeruddin,, M. K. (2018). Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Chemical Reviews, 373, 258. https://doi.org/10.1016/j.ccr.2017.10.021
Zhang,, C. W., Yun,, P. J., Liu,, J., Yang,, X., & Zhang,, X. (2019). An approach to solar rechargeable flow battery based on electroactive organic redox couples. International Journal of Electrochemical Science, 14, 4264–4270. https://doi.org/10.20964/2019.05.55
Zhang,, D., Sun,, B., Huang,, H., Gan,, Y., Xia,, Y., Liang,, C., … Zhang,, J. (2020). A Solar‐driven flexible electrochromic supercapacitor. Materials, 13(5), 1206. https://doi.org/10.3390/ma13051206
Zhang,, F., Li,, W., Xu,, Z., Ye,, M., Guo,, W., Xub,, H., & Liu,, X. (2017). Transparent conducting oxide‐ and Pt‐free flexible photo‐rechargeable electric energy storage systems. RSC Advances, 7, 52988–52994. https://doi.org/10.1039/C7RA11246G
Zhang,, F., Li,, W., Xu,, Z., Ye,, M., Xu,, H., Guo,, W., & Liu,, X. (2018a). An integrated power pack of dye‐sensitized solar cell and Li battery based on double‐sided TiO2 nanotube arrays. Nano Letters, 12(5), 2520–2523. https://doi.org/10.1021/nl3007159
Zhang,, F., Li,, W., Xu,, Z., Ye,, M., Xu,, H., Guo,, W., & Liu,, X. (2018b). Highly flexible and scalable photo‐rechargeable power unit based on symmetrical nanotube arrays. Nano Energy, 46, 168–175. https://doi.org/10.1016/j.nanoen.2018.01.041
Zhang,, H., Yu,, Y., Zhang,, L., Zhai,, Y., & Dong,, S. (2016). Self‐powered fluorescence display devices based on a fast self‐charging/recharging battery (Mg/Prussian blue). Chemical Science, 2016, 7, 6721–7, 6727. https://doi.org/10.1039/C6SC02347A
Zhang,, X., Huang,, X., Li,, C., & Jiang,, H. (2013). Dye‐sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode. Advance Materials, 25(30), 4093–4096. https://doi.org/10.1002/adma.201301088
Zhang,, Z., Chen,, X., Chen,, P., Guan,, G., Qiu,, L., Lin,, H., … Peng,, H. (2014). Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Advanced Materials, 26, 466. https://doi.org/10.1002/adma.201302951
Zhao,, D., Wang,, C., Song,, Z., Yu,, Y., Chen,, C., Zhao,, X., … Yan,, Y. (2018). Four‐terminal all‐perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Letter, 3, 305. https://doi.org/10.1021/acsenergylett.7b01287
Zheng,, J. P., Cygan,, P. J., & Jow,, T. R. (1995). Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society, 142, 2699–2703. https://doi.org/10.1149/1.2050077
Zheng,, X., Sun,, Y., Qin,, H., & Ji,, Z. (2019). Solar‐charged pseudocapacitors: Simultaneous conversion and storage of solar energy in ZnO@NiO nanorod arrays. Journal of Alloys and Compounds, 781, 351–356. https://doi.org/10.1016/j.jallcom.2018.12.100
Zheng,, X., Yan,, X., Sun,, Y., Li,, Y., Li,, M., Zhang,, G., & Zhang,, Y. (2016). Band alignment engineering for high‐energy‐density solid‐state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)2 interface. Journal of Material Chemistry A, 4, 17981–17987. https://doi.org/10.1039/C6TA07646G
Zhou,, F. C., Ren,, Z. W., Zhao,, Y. D., Shen,, X. P., Wang,, A. W., Li,, Y. Y., … Chai,, Y. (2016). Perovskite photovoltachromic supercapacitor with all‐transparent electrodes. ACS Nano, 10, 5900–5908. https://doi.org/10.1021/acsnano.6b01202
Zhou,, Y., Fang,, J., Wang,, H. X., Zhou,, H., Yan,, G. L., Zhao,, Y., … Lin,, T. (2018). Multicolor electrochromic fibers with helix‐patterned electrodes. Advanced Electronic Materials, 4, 8. https://doi.org/10.1002/aelm.201800104
Zhu,, Z., Zhai,, Y., Li,, Z., Zhu,, P., Mao,, S., Zhu,, C., & Lin,, Y. (2019). Red carbon dots: Optical property regulations and applications. Materials Today, 30, 1369–7021. https://doi.org/10.1016/j.mattod.2019.05.003