Assouline,, D., Mohajeri,, N., & Scartezzini,, J.‐L. (2018). Estimation of large‐scale solar rooftop PV potential for smart grid integration: A methodological review. In M. H. Amini,, K. G. Boroojeni,, S. S. Iyengar,, P. M. Pardalos,, F. Blaabjerg,, & A. M. Madni, (Eds.), Sustainable interdependent networks: From theory to application (pp. 173–219). Springer International Publishing. https://doi.org/10.1007/978-3-319-74412-4_11
Byrne,, J., & Taminiau,, J. (2018). 1.2—Utilizing the urban fabric as the solar power plant of the future. In P. Droege, (Ed.), Urban energy transition (2nd ed., pp. 31–49). Elsevier. https://doi.org/10.1016/B978-0-08-102074-6.00016-4
Byrne,, J., Taminiau,, J., Kurdgelashvili,, L., & Kim,, K. N. (2015). A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renewable and Sustainable Energy Reviews, 41, 830–844. https://doi.org/10.1016/j.rser.2014.08.023
Byrne,, J., Taminiau,, J., Seo,, J., Lee,, J., & Shin,, S. (2017). Are solar cities feasible? A review of current research. International Journal of Urban Sciences, 21(3), 239–256. https://doi.org/10.1080/12265934.2017.1331750
Carmichael,, C., & Gartman,, M. (2015). Deep energy retrofits using energy savings performance contracts: Success stories (p. 39). Rocky Mountain Institute (RMI) https://rmi.org/wp-content/uploads/2017/05/Deep-Energy-Retrofits-Using-ESPC-2015.pdf
Chan,, S., van Asselt,, H., Hale,, T., Abbott,, K. W., Beisheim,, M., Hoffmann,, M., Guy,, B., Höhne,, N., Hsu,, A., Pattberg,, P., Pauw,, P., Ramstein,, C., & Widerberg,, O. (2015). Reinvigorating international climate policy: A comprehensive framework for effective nonstate action. Global Policy, 6(4), 466–473. https://doi.org/10.1111/1758-5899.12294
Chen,, Y., Hong,, T., & Piette,, M. A. (2017). Automatic generation and simulation of urban building energy models based on city datasets for city‐scale building retrofit analysis. Applied Energy, 205, 323–335. https://doi.org/10.1016/j.apenergy.2017.07.128
Cho,, M.‐R. (2019). Urban resilience through progressive governance: The case of the ‘one less nuclear power plant’ policy, Seoul, Korea. Urban Studies, 57, 1434–1451. https://doi.org/10.1177/0042098019838965
Electric Power Statistics Information System (EPSIS) (2020). Electric Power Statistics Information System. http://epsis.kpx.or.kr/epsisnew/selectEkfaFclDtlChart.do?menuId=020104
Gagnon,, P., Margolis,, R., Melius,, J., Phillips,, C., & Elmore,, R. (2016). Rooftop solar photovoltaic technical potential in the United States. A detailed assessment (NREL/TP—6A20‐65298, 1236153; p. NREL/TP—6A20‐65298, 1236153). https://doi.org/10.2172/1236153
Hankyoreh. (2017, November 22). “Solar City Seoul” aims to produce 1 GW of solar power annually. http://english.hani.co.kr/arti/english_edition/e_national/820207.html
Hong,, J. H., Kim,, J., Son,, W., Shin,, H., Kim,, N., Lee,, W. K., & Kim,, J. (2019). Long‐term energy strategy scenarios for South Korea: Transition to a sustainable energy system. Energy Policy, 127, 425–437. https://doi.org/10.1016/j.enpol.2018.11.055
Hong,, T., Lee, M., Koo, C., Jeong, K., & Kim, J. (2017). Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis. Applied Energy, 194, 320–332. https://doi.org/10.1016/j.apenergy.2016.07.001
Howard,, B., Parshall,, L., Thompson,, J., Hammer,, S., Dickinson,, J., & Modi,, V. (2012). Spatial distribution of urban building energy consumption by end use. Energy and Buildings, 45, 141–151. https://doi.org/10.1016/j.enbuild.2011.10.061
Kanters,, J., & Wall,, M. (2016). A planning process map for solar buildings in urban environments. Renewable and Sustainable Energy Reviews, 57, 173–185. https://doi.org/10.1016/j.rser.2015.12.073
Kanters,, J., Wall,, M., & Kjellsson,, E. (2014). The solar map as a knowledge base for solar energy use. Energy Procedia, 48, 1597–1606. https://doi.org/10.1016/j.egypro.2014.02.180
Kennedy,, C., Cuddihy,, J., & Engel‐Yan,, J. (2007). The changing metabolism of cities. Journal of Industrial Ecology, 11(2), 43–59. https://doi.org/10.1162/jie.2007.1107
Kennedy,, C. A., Stewart,, I., Facchini,, A., Cersosimo,, I., Mele,, R., Chen,, B., Uda,, M., Kansal,, A., Chiu,, A., Kim,, K., Dubeux,, C., Lebre La Rovere,, E., Cunha,, B., Pincetl,, S., Keirstead,, J., Barles,, S., Pusaka,, S., Gunawan,, J., Adegbile,, M., … Sahin,, A. D. (2015). Energy and material flows of megacities. Proceedings of the National Academy of Sciences, 112(19), 5985–5990. https://doi.org/10.1073/pnas.1504315112
Kim,, C. (2017, October 22). South Korea`s president says will continue phasing out nuclear power—Reuters [Newspaper]. Reuters.Com. https://www.reuters.com/article/us-southkorea-nuclear-moon/south-koreas-president-says-will-continue-phasing-out-nuclear-power-idUSKBN1CR04U
Kim,, D. H., Eisenberg,, D. A., Chun,, Y. H., & Park,, J. (2017). Network topology and resilience analysis of south Korean power grid. Physica A: Statistical Mechanics and its Applications, 465, 13–24. https://doi.org/10.1016/j.physa.2016.08.002
Kim,, H. (2018). Interlinking open government data in Korea using administrative district knowledge graph. Journal of Information Science Theory and Practice, 6(1), 18–30. https://doi.org/10.1633/JISTaP.2018.6.1.2
Kim,, H.‐G., Lee,, J.‐T., Kim,, C. K., Yun,, C.‐Y., Kim,, B.‐Y., Kim,, J.‐Y., & Kang,, Y.‐H. (2019). Development of SEED (solar energy estimator for Daejeon) using chollian satellite imagery. IOP Conference Series: Earth and Environmental Science, 227, 022030. https://doi.org/10.1088/1755-1315/227/2/022030
Kim,, J., Park,, S. Y., & Lee,, J. (2018). Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference‐dependent preference in South Korea. Energy Policy, 120, 761–770. https://doi.org/10.1016/j.enpol.2018.04.062
Kim,, K., & Cho,, Y. (2017). Estimation of power outage costs in the industrial sector of South Korea. Energy Policy, 101, 236–245. https://doi.org/10.1016/j.enpol.2016.11.048
Kobashi,, T., Yoshida,, T., Yamagata,, Y., Naito,, K., Pfenninger,, S., Say,, K., Takeda,, Y., Ahl,, A., Yarime,, M., & Hara,, K. (2020). On the potential of “photovoltaics + electric vehicles” for deep decarbonization of Kyoto`s power systems: Techno‐economic‐social considerations. Applied Energy, 275, 115419. https://doi.org/10.1016/j.apenergy.2020.115419
Koo,, C., Hong, T., Park, H. S., & Yun, G. (2014). Framework for the analysis of the potential of the rooftop photovoltaic system to achieve the net‐zero energy solar buildings: Potential of the rooftop photovoltaic system to achieve the net‐zero energy solar buildings. Progress in Photovoltaics: Research and Applications, 22(4), 462–478. https://doi.org/10.1002/pip.2448.
Kona,, A., Bertoldi,, P., Monforti‐Ferrario,, F., Rivas,, S., & Dallemand,, J. F. (2018). Covenant of mayors signatories leading the way towards 1.5 degree global warming pathway. Sustainable Cities and Society, 41, 568–575. https://doi.org/10.1016/j.scs.2018.05.017
Kontokosta,, C. E., & Tull,, C. (2017). A data‐driven predictive model of city‐scale energy use in buildings. Applied Energy, 197, 303–317. https://doi.org/10.1016/j.apenergy.2017.04.005
Korea Electric Power Corporation (KEPCO). (2020). Statistics of electric power in Korea. http://home.kepco.co.kr/kepco/KO/ntcob/list.do?boardCd=BRD_000099%26menuCd=FN05030103
Lee,, Heesu. (2020, September 29). South Korea`s $35 billion green plan skirts zero‐carbon target. Bloomberg.Com. https://www.bloomberg.com/news/articles/2020-07-14/green-new-deal-in-south-korea-stops-short-of-zero-carbon-target
Lee,, H., Jung,, E.‐Y., & Lee,, J.‐D. (2019). Public–private co‐evolution and niche development by technology transfer: A case study of state‐led electricity system transition in South Korea. Energy Research %26 Social Science, 49, 103–113. https://doi.org/10.1016/j.erss.2018.11.001
Lee,, J., & Byrne,, J. (2019). Expanding the conceptual and analytical basis of energy justice: Beyond the three‐tenet framework. Frontiers in Energy Research, 7, 1–10. https://doi.org/10.3389/fenrg.2019.00099
Lee,, J.‐S., & Kim,, J. (2016). South Korea`s urban green energy strategies: Policy framework and local responses under the green growth. Cities, 54, 20–27. https://doi.org/10.1016/j.cities.2015.10.011
Lee,, M., Hong, T., Jeong, K., & Kim, J. (2018a). A bottom‐up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity. Applied Energy, 232, 640–656. doi:https://doi.org/10.1016/j.apenergy.2018.09.176
Lee,, M., Hong, T., Jeong, J., & Jeong, K. (2018b). Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level. Energy, 160, 213–224. https://doi.org/10.1016/j.energy.2018.07.020
Lee,, T., Lee,, T., & Lee,, Y. (2014). An experiment for urban energy autonomy in Seoul: The one ‘less’ nuclear power plant policy. Energy Policy, 74, 311–318. https://doi.org/10.1016/j.enpol.2014.08.023
Lim,, Y., Edelenbos,, J., & Gianoli,, A. (2019). Smart energy transition: An evaluation of cities in South Korea. Informatics, 6(4), 50. https://doi.org/10.3390/informatics6040050
Mah,, D. N. (2019). Community solar energy initiatives in urban energy transitions: A comparative study of Foshan, China and Seoul, South Korea. Energy Research %26 Social Science, 50, 129–142. https://doi.org/10.1016/j.erss.2018.11.011
Margolis,, R., Gagnon,, P., Melius,, J., Phillips,, C., & Elmore,, R. (2017). Using GIS‐based methods and lidar data to estimate rooftop solar technical potential in US cities. Environmental Research Letters, 12(7), 074013. https://doi.org/10.1088/1748-9326/aa7225
Mastrucci,, A., Baume,, O., Stazi,, F., & Leopold,, U. (2014). Estimating energy savings for the residential building stock of an entire city: A GIS‐based statistical downscaling approach applied to Rotterdam. Energy and Buildings, 75, 358–367. https://doi.org/10.1016/j.enbuild.2014.02.032
Mayor of London. (2018). Solar action plan for London. https://www.london.gov.uk/sites/default/files/solar_action_plan.pdf
Meng,, T., Hsu,, D., & Han,, A. (2017). Estimating energy savings from benchmarking policies in New York City. Energy, 133, 415–423. https://doi.org/10.1016/j.energy.2017.05.148
Mikkola,, J., & Lund,, P. D. (2014). Models for generating place and time dependent urban energy demand profiles. Applied Energy, 130, 256–264. https://doi.org/10.1016/j.apenergy.2014.05.039
Milne,, M., Adelson,, M., & Corwin,, R. (1979). Three solar urban futures: Characterization of a future community under three energy‐supply scenarios (DOE/EV‐0052/1). Urban Innovations Group. https://doi.org/10.2172/5690109
Ministry of Land, Infrastructure and Transport Green Architecture Portal. (2018). Green Together. https://www.greentogether.go.kr:8343/sta/sta010101.do
Ministry of Trade, Industry and Energy (MOTIE). (2018). Korea`s renewable energy 3020 plan. http://gggi.org/site/assets/uploads/2018/10/Presentation-by-Mr.-Kyung-ho-Lee-Director-of-the-New-and-Renewable-Energy-Policy-Division-MOTIE.pdf
Moran,, D., Kanemoto,, K., Jiborn,, M., Wood,, R., Többen,, J., & Seto,, K. C. (2018). Carbon footprints of 13 000 cities. Environmental Research Letters, 13(6), 064041. https://doi.org/10.1088/1748-9326/aac72a
Nelson,, J. R., & Grubesic, T. H. (2020). The use of LiDAR versus unmanned aerial systems (UAS) to assess rooftop solar energy potential. Sustainable Cities and Society, 61, 102353. https://doi.org/10.1016/j.scs.2020.102353.
Nematollahi,, O., & Kim,, K. C. (2017). A feasibility study of solar energy in South Korea. Renewable and Sustainable Energy Reviews, 77, 566–579. https://doi.org/10.1016/j.rser.2017.03.132
NGII. (2017). National Atlas of Korea. National Geographic Information Institute (NGII) http://nationalatlas.ngii.go.kr/pages/page_1288.php
NYC (2016). New York City’s Roadmap to 80 x 50. City of New York; 2016. https://www1.nyc.gov/assets/dcas/downloads/pdf/energy/reportsandpublication/NYC_Roadmap_to_80x50_Report.pdf.
Open Infrastructure Map. (2020). Open Infrastructure Map. https://openinframap.org/#2/26/12
OpenStreetMap. (2020). OpenStreetMap. https://www.openstreetmap.org/
Park,, E. (2017). Potentiality of renewable resources: Economic feasibility perspectives in South Korea. Renewable and Sustainable Energy Reviews, 79, 61–70. https://doi.org/10.1016/j.rser.2017.05.043
Park,, N.‐B., Yun,, S.‐J., & Jeon,, E.‐C. (2013). An analysis of long‐term scenarios for the transition to renewable energy in the Korean electricity sector. Energy Policy, 52, 288–296. https://doi.org/10.1016/j.enpol.2012.09.021
Pasichnyi,, O., Levihn,, F., Shahrokni,, H., Wallin,, J., & Kordas,, O. (2019). Data‐driven strategic planning of building energy retrofitting: The case of Stockholm. Journal of Cleaner Production, 233, 546–560. https://doi.org/10.1016/j.jclepro.2019.05.373
Reinhart,, C. F., & Cerezo Davila,, C. (2016). Urban building energy modeling—A review of a nascent field. Building and Environment, 97, 196–202. https://doi.org/10.1016/j.buildenv.2015.12.001
Republic of Korea. (2015). INDC submission by the Republic of Korea on June 30 (p. 4). Republic of Korea. https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Republic%20of%20Korea%20First/INDC%20Submission%20by%20the%20Republic%20of%20Korea%20on%20June%2030.pdf.
Ritschard,, R. (1979). Assessment of solar energy within a community: Summary of three community‐level studies (DOE/EV—0054, 5398493; p. DOE/EV—0054, 5398493). https://doi.org/10.2172/5398493
Scheer,, H. (2008). Solar city: Reconnecting energy generation and use to the technical and social logic of solar energy. In Urban energy transition (pp. 15–26). Elsevier. https://doi.org/10.1016/B978-0-08-045341-5.00001-3
Shahrokni,, H., Levihn,, F., & Brandt,, N. (2014). Big meter data analysis of the energy efficiency potential in Stockholm`s building stock. Energy and Buildings, 78, 153–164. https://doi.org/10.1016/j.enbuild.2014.04.017
Smith,, J., & Cha,, S. (2020, June 8). Jobs come first in South Korea`s ambitious “green new Deal” climate plan. Reuters https://www.reuters.com/article/us-southkorea-environment-newdeal-analys-idUSKBN23F0SV
Taminiau,, J., & Byrne,, J. (2020). City‐scale urban sustainability: Spatiotemporal mapping of distributed solar power for new York City. WIREs Energy and Environment, 9(5), 1–24. https://doi.org/10.1002/wene.374
Tang,, M., Hong,, J., Guo,, S., Liu,, G., & Shen,, G. Q. (2021). A bibliometric review of urban energy metabolism: Evolutionary trends and the application of network analytical methods. Journal of Cleaner Production, 279, 123403. https://doi.org/10.1016/j.jclepro.2020.123403
Tong,, Z., Chen,, Y., Malkawi,, A., Liu,, Z., & Freeman,, R. B. (2016). Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy, 179, 660–668. https://doi.org/10.1016/j.apenergy.2016.07.019
United Nations. (2016). The World`s cities in 2016. United Nations. https://doi.org/10.18356/8519891f-en
Wilson,, E. J., Christensen, C. B., Horowitz, S. G., Robertson, J. J., & Maguire, J. B. (2017). Energy Efficiency Potential in the U.S. Single‐Family Housing Stock (NREL/TP‐‐5500‐68670, 1414819; p. NREL/TP‐‐5500‐68670, 1414819). https://doi.org/10.2172/1414819.
Wolfram,, M. (2019). Learning urban energy governance for system innovation: An assessment of transformative capacity development in three south Korean cities. Journal of Environmental Policy %26 Planning, 21(1), 30–45. https://doi.org/10.1080/1523908X.2018.1512051
Wolman,, A. (1965). The metabolism of cities. Scientific American, 213(3), 178–193.
Yoon,, I., Lee,, Y., & Yoon,, S. K. (2017). An empirical analysis of energy efficiency measures applicable to cities, regions, and local governments, based on the case of South Korea`s local energy saving program. Mitigation and Adaptation Strategies for Global Change, 22(6), 863–878. https://doi.org/10.1007/s11027-016-9702-3
Yoon‐seung,, K. (2019, April 19). S. Korea to cut dependency on fossil fuel, shift to renewable energy. Yonhap News Agency. https://en.yna.co.kr/view/AEN20190419001700320