ABB‐ElectraNet. (2020, April). Dalrymple ESCRI‐SA battery energy storage project SEPA energy storage working group. Energy Storage Working Group. Retrieved from https://www.escri-sa.com.au/knowledge-sharing/
AEMC. (2018, 86). Wholesale demand response mechanisms. Australian Energy Market Commission (AEMC) Retrieved from https://www.aemc.gov.au/sites/default/files/2018-11/Consultation%20paper.pdf
AEMC. (2019). Mechanisms to enhance resilience in the power system—Review of the south Australian black system event (p. 203). Author Retrieved from https://www.aemc.gov.au/sites/default/files/documents/aemc_-_sa_black_system_review_-_final_report.pdf
AEMO. (2015a). Guide to ancillary services in the national electricity market. Author Retrieved from https://www.aemo.com.au/-/media/Files/PDF/Guide-to-Ancillary-Services-in-the-National-Electricity-Market.pdf
AEMO. (2015b). Trip of the APD‐Heywood‐Tarrone 500 kV transmission line and APD no.3 500 kV Busbar on 7 February 2015 (p. 9). Author Retrieved from https://aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2015/Trip-of-APD-Heywood-Tarron-500-kV-transmission-line-and-APD-No-3-500-kV-busbar-on-7-February-2015.pdf
AEMO. (2018). Inertia requirements methodology. Author Retrieved from https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/System-Security-Market-Frameworks-Review/2018/Inertia_Requirements_Methodology_PUBLISHED.pdf
AEMO. (2019a). Final report—Queensland and South Australia system separation on 25 August 2018 (p. 109). Author Retrieved from https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2018/Qld-SA-Separation-25-August-2018-Incident-Report.pdf
AEMO. (2019b). Technical integration of distributed energy resources (p. 75). Author Retrieved from https://www.aemo.com.au/-/media/Files/Electricity/NEM/DER/2019/Technical-Integration/Technical-Integration-of-DER-Report.pdf
AEMO. (2019c). Western Victoria renewable integration. (Project Assessment Conclusions Report) (p. 80). Author Retrieved from https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Victorian_Transmission/2019/PACR/Western-Victoria-RIT-T-PACR.pdf
AEMO. (2019d). VPP demonstrations FCAS specification (p. 17). Author Retrieved from https://www.aemo.com.au/-/media/Files/Electricity/NEM/DER/2019/VPP-Demonstrations/VPP-Demonstrations-FCAS-Specification.pdf
AEMO. (2020a). Australian solar energy forecasting system. Author Retrieved from https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/operational-forecasting/solar-and-wind-energy-forecasting/australian-solar-energy-forecasting-system
AEMO. (2020b). AEMO virtual power plant demonstration: Knowledge sharing report #1. Author Retrieved from https://aemo.com.au/-/media/files/electricity/der/2020
AEMO. (2020c). System strength—System strength in the NEM explained (p. 10). Author Retrieved from https://aemo.com.au/-/media/files/electricity/nem/system-strength-explained.pdf?la=en
AEMO. (2020d). Renewable integration study: Stage 1 report (p. 75). Author Retrieved from https://aemo.com.au/-/media/files/major-publications/ris/2020/renewable-integration-study-stage-1.pdf?la=en
AEMO‐ENA. (2019). Open energy networks—Required capabilities and recommended actions (p. 48). AEMO‐ENA Retrieved from https://www.energynetworks.com.au/assets/uploads/open_energy_networks_-_required_capabilities_and_recommended_actions_report_22_july_2019.pdf
ARENA. (2019, September 8). United energy to test voltage control improving grid stability. Author. Retrieved from https://arena.gov.au/news/united-energy-to-test-voltage-control-improving-grid-stability/
AS 4777.3—2005. (2005). Grid connection of energy systems via inverters: Part 3: Grid protection requirements. Australian Standard™.
Aurecon. (2020). Hornsdale power reserve—Year 2 technical and market impact case study. Author. Retrieved from https://www.aurecongroup.com/markets/energy/hornsdale-power-reserve-impact-study
Bevrani,, H. (2009). Robust power system frequency control. Springer US. https://doi.org/10.1007/978-0-387-84878-5
Billimoria,, F., Mancarella,, P., & Poudineh,, R. (2020). Market design for system security in low‐carbon electricity grids: From the physics to the economics. The Oxford Institute for Energy Studies. Retrieved from https://www.oxfordenergy.org/publications/market-design-for-system-security-in-low-carbon-electricity-grids-from-the-physics-to-the-economics/
Bloom,, A., Helman,, U., Holttinen,, H., Summers,, K., Bakke,, J., Brinkman,, G., & Lopez,, A. (2017). It`s indisputable: Five facts about planning and operating modern power systems. IEEE Power and Energy Magazine, 15(6), 22–30. https://doi.org/10.1109/MPE.2017.2729079
Bollen,, M., & Hassan,, F. (2011). Integration of distributed generation in the power system (1st ed.). Wiley‐IEEE Press Retrieved from https://www.wiley.com/en-us/Integration+of+Distributed+Generation+in+the+Power+System-p-9780470643372
Bryant,, J. S., Sokolowski,, P., Jennings,, R., & Meegahapola,, L. G. (2021). Synchronous generator governor response: Performance implications under high share of inverter‐based renewable energy sources. IEEE Transactions on Power Systems, 1–1. https://doi.org/10.1109/TPWRS.2021.3054251
Bryant,, J. S., Ghanbari,, R., Jalili,, M., Sokolowski,, P., & Meegahapola,, L. (2019). Frequency control challenges in power systems with high renewable power generation: An Australian perspective. RMIT University Retrieved from https://www.researchgate.net/publication/337135611_Frequency_Control_Challenges_in_Power_Systems_with_High_Renewable_Power_Generation_An_Australian_Perspective
Burke,, D. J., & O`Malley,, M. J. (2011). A study of principal component analysis applied to spatially distributed wind power. IEEE Transactions on Power Systems, 26(4), 2084–2092. https://doi.org/10.1109/TPWRS.2011.2120632
California ISO. (2016). Flexible ramping product—Draft final technical appendix. Author Retrieved from http://www.caiso.com/Documents/Addendum-DraftFinalTechnicalAppendix-FlexibleRampingProduct.pdf
Chen,, X., Du,, Y., Lim,, E., Wen,, H., Yan,, K., & Kirtley,, J. (2020). Power ramp‐rates of utility‐scale PV systems under passing clouds: Module‐level emulation with cloud shadow modeling. Applied Energy, 268, 114980. https://doi.org/10.1016/j.apenergy.2020.114980
Chen,, Y., Moreno,, R., Strbac,, G., & Alvarado,, D. (2018). Coordination strategies for securing AC/DC flexible transmission networks with renewables. IEEE Transactions on Power Systems, 33(6), 6309–6320. https://doi.org/10.1109/TPWRS.2018.2851214
Clean Energy Council. (2020). Clean energy Australia report 2020. Retrieved from https://assets.cleanenergycouncil.org.au/documents/resources/reports/clean-energy-australia/clean-energy-australia-report-2020.pdf
Clegg,, S., & Mancarella,, P. (2015). Integrated modeling and assessment of the operational impact of power‐to‐gas (P2G) on electrical and gas transmission networks. IEEE Transactions on Sustainable Energy, 6(4), 1234–1244. https://doi.org/10.1109/TSTE.2015.2424885
Clegg,, S., & Mancarella,, P. (2016). Storing renewables in the gas network: Modelling of power‐to‐gas seasonal storage flexibility in low‐carbon power systems. Transmission Distribution IET Generation, 10(3), 566–575. https://doi.org/10.1049/iet-gtd.2015.0439
COAG Energy Council. (2019). Australia`s national hydrogen strategy (p. 136). COAG Energy Council Retrieved from https://www.industry.gov.au/sites/default/files/2019-11/australias-national-hydrogen-strategy.pdf
D`Arco,, S., Suul,, J. A., & Fosso,, O. B. (2015). A virtual synchronous machine implementation for distributed control of power converters in SmartGrids. Electric Power Systems Research, 122, 180–197. https://doi.org/10.1016/j.epsr.2015.01.001
Denholm,, P., Eichman,, J., Markel,, T., & Ma,, O. (2015). Summary of market opportunities for electric vehicles and dispatchable load in electrolyzers (Technical Report NREL/TP‐6A20‐64172; NREL/TP‐6A20‐64172; p. 48). NREL. Retrieved from https://www.nrel.gov/docs/fy15osti/64172.pdf
DGA Consulting. (2016). International review of frequency control adaptation (Consulting Report; p. 179). AEMO. Retrieved from https://aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Reports/2016/FPSS-International-Review-of-Frequency-Control.pdf
Dozein,, M. G., Chaspierre,, G., Mancarella,, P., Panciatici,, P., & Van Cutsem,, T. (2021). Frequency response from solar PV: A dynamic equivalence closed loop system identification approach. IEEE Systems Journal (In press). Retrieved from https://orbi.uliege.be/handle/2268/255006
Dozein,, M. G., & Mancarella,, P. (2019). Application of utility‐connected battery energy storage system for integrated dynamic services. 2019 IEEE Milan PowerTech, 1–6. https://doi.org/10.1109/PTC.2019.8810561
Dozein,, M. G., Mancarella,, P., Saha,, T. K., & Yan,, R. (2018). System strength and weak grids: Fundamentals, challenges, and mitigation strategies. 2018 Australasian Universities Power Engineering Conference (AUPEC), 1–7. https://doi.org/10.1109/AUPEC.2018.8757997
EirGrid. (2017). DS3 system services protocol—Regulated arrangements (p. 73). Author Retrieved from http://www.eirgridgroup.com/site-files/library/EirGrid/DS3-System-Services-Protocol-Regulated-Arrangements_final.pdf
EirGrid. (2019). Annual renewable energy constraint and curtailment report 2018. Author Retrieved from http://www.eirgridgroup.com/site-files/library/EirGrid/Annual-Renewable-Constraint-and-Curtailment-Report-2018-V1.0.pdf
ElectraNet. (2019). Addressing the system strength gap in SA—Economic evaluation report (p. 32). Author Retrieved from https://www.electranet.com.au/wp-content/uploads/2019/02/2019-02-18-System-Strength-Economic-Evaluation-Report-FINAL.pdf
EPRI. (2019). Meeting the challenges of declining system inertia. Electric power research institute (EPRI).
ERCOT. (2016). Future Ancillary Services—Preparing to maintain reliability on a changing grid. Electric Reliability Council of Texas (ERCOT) Retrieved from http://www.ercot.com/content/wcm/lists/89476/FAS_TwoPager_April2016_FINAL.pdf
ERCOT. (2018a). Inertia: Basic concepts and impacts on the ERCOT Grid. Author Retrieved from http://www.ercot.com/content/wcm/lists/144927/Inertia_Basic_Concepts_Impacts_On_ERCOT_v0.pdf
ERCOT. (2018b). Dynamic stability assessment of high penetration of renewable generation in the ERCOT Grid (p. 40). Author Retrieved from http://www.ercot.com/content/wcm/lists/144927/Dynamic_Stability_Assessment_of_High_Penetration_of_Renewable_Generation_in_the_ERCOT_Grid.pdf
Fahiman,, F., Disano,, S., Erfani,, S. M., Mancarella,, P., & Leckie,, C. (2019). Data‐driven dynamic probabilistic reserve sizing based on dynamic Bayesian belief networks. IEEE Transactions on Power Systems, 34(3), 2281–2291. https://doi.org/10.1109/TPWRS.2018.2884711
Fingrid. (2019, June 13). Inertia of the Nordic power system. Author Retrieved from https://www.fingrid.fi/en/electricity-market/electricity-market-information/InertiaofNordicpowersystem/
Flynn,, D., Rather,, Z., Ardal,, A., D`Arco,, S., Hansen,, A. D., Cutululis,, N. A., Sorensen,, P., Estanquiero,, A., Gómez,, E., Menemenlis,, N., Smith,, C., & Wang,, Y. (2017). Technical impacts of high penetration levels of wind power on power system stability. WIREs Energy and Environment, 6(2), e216. https://doi.org/10.1002/wene.216
Fox,, B., Bryans,, L., Flynn,, D., Jenkins,, N., Milborrow,, D., O`Malley,, M., Watson,, R., & Anaya‐Lara,, O. (2014). Wind power integration: Connection and system operational aspects. IET Digital Library. https://doi.org/10.1049/PBRN014E
González‐Romera,, E., Barrero‐González,, F., Romero‐Cadaval,, E., & Milanés‐Montero,, M. I. (2015). Overview of plug‐in electric vehicles as providers of ancillary services. 2015 9th International Conference on Compatibility and Power Electronics (CPE) (pp. 516–521). https://doi.org/10.1109/CPE.2015.7231129
Hartmann,, B., Vokony,, I., & Táczi,, I. (2019). Effects of decreasing synchronous inertia on power system dynamics—Overview of recent experiences and marketisation of services. International Transactions on Electrical Energy Systems, 29(12), e12128. https://doi.org/10.1002/2050-7038.12128
Hodge,, B.‐M. S., Jain,, H., Brancucci,, C., Seo,, G.‐S., Korpås,, M., Kiviluoma,, J., Holttinen,, H., Smith,, J. C., Orths,, A., Estanqueiro,, A., Söder,, L., Flynn,, D., Vrana,, T. K., Kenyon,, R. W., & Kroposki,, B. (2020). Addressing technical challenges in 100% variable inverter‐based renewable energy power systems. WIREs Energy and Environment, 9(5), e376. https://doi.org/10.1002/wene.376
IEEE 1547. (2018). IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces (pp. 1–138).
IEEE PES PSDPC. (2014). Power system restoration dynamics (issues, techniques, planning, training %26 special considerations) (p. 354). Author. Retrieved from https://resourcecenter.ieee-pes.org/technical-publications/technical-paper-compendiums/PESTPC2.html
IEEE PES PSDPC. (2020). Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies. Author. Retrieved from https://resourcecenter.ieee-pes.org/technical-publications/technical-reports/PES_TP_TR77_PSDP_stability_051320.html
IEEE PES TDC. (1997). IEEE guide for planning DC links terminating at AC locations having low short‐circuit capacities (pp. 1–216). IEEE PES Transmission and Distribution Committee.
Inzunza,, A., Moreno,, R., Bernales,, A., & Rudnick,, H. (2016). CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation. Energy Economics, 59, 104–117. https://doi.org/10.1016/j.eneco.2016.07.020
Joskow,, P. L. (2010). Market imperfections versus regulatory imperfections. CESifo DICE Report, 8(3), 3–7.
Junyent‐Ferr,, A., Pipelzadeh,, Y., & Green,, T. C. (2015). Blending HVDC‐link energy storage and offshore wind turbine inertia for fast frequency response. IEEE Transactions on Sustainable Energy, 6(3), 1059–1066. https://doi.org/10.1109/TSTE.2014.2360147
Kabiri,, R., Holmes,, D. G., McGrath,, B. P., & Meegahapola,, L. G. (2015). LV grid voltage regulation using transformer electronic tap changing, with PV inverter reactive power injection. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 1182–1192. https://doi.org/10.1109/JESTPE.2015.2443839
Kang,, M., Kim,, K., Muljadi,, E., Park,, J.‐W., & Kang,, Y. C. (2016). Frequency control support of a doubly‐fed induction generator based on the torque limit. IEEE Transactions on Power Systems, 31(6), 4575–4583. https://doi.org/10.1109/TPWRS.2015.2514240
Kaun,, B. (2013). Cost‐effectiveness of energy storage in California: Application of the energy storage valuation tool to inform the California public utility commission proceeding R. 10‐12‐007 (Technical Report No. 3002001162). EPR. Retrieved from http://large.stanford.edu/courses/2013/ph240/cabrera1/docs/3002001162.pdf
Key,, T., Kou,, G., & Jensen,, M. (2020). On good behavior: Inverter‐grid protections for integrating distributed photovoltaics. IEEE Power and Energy Magazine, 18(6), 75–85. https://doi.org/10.1109/MPE.2020.3014747
Kundur,, P. (1994). Power system stability and control. McGraw‐Hill.
Lave,, M., Reno,, M. J., & Peppanen,, J. (2019). Distribution system parameter and topology estimation applied to resolve Low‐voltage circuits on three real distribution feeders. IEEE Transactions on Sustainable Energy, 10(3), 1585–1592. https://doi.org/10.1109/TSTE.2019.2917679
Losi,, A., Mancarella,, P., & Vicino,, A. (2015). Integration of demand response into the electricity chain: Challenges, opportunities, and smart Grid solutions. Wiley Retrieved from https://www.wiley.com/en-us/Integration+of+Demand+Response+into+the+Electricity+Chain%3A+Challenges%2C+Opportunities%2C+and+Smart+Grid+Solutions-p-9781848218543
Ma,, O., Alkadi,, N., Cappers,, P., Denholm,, P., Dudley,, J., Goli,, S., Hummon,, M., Kiliccote,, S., MacDonald,, J., Matson,, N., Olsen,, D., Rose,, C., Sohn,, M. D., Starke,, M., Kirby,, B., & O`Malley,, M. (2013). Demand response for ancillary services. IEEE Transactions on Smart Grid, 4(4), 1988–1995. https://doi.org/10.1109/TSG.2013.2258049
Macdonald‐Smith,, A. (2020, October). South Australia records 100pc solar in world first. The Australian Financial Review Retrieved from https://www.afr.com/companies/energy/south-australia-records-100pc-solar-in-world-first-20201021-p567al
Mancarella,, P., & Billimoria,, F. (2021). The fragile grid: The physics and economics of security‐services in low‐carbon power systems. IEEE Power and Energy Magazine, 19, 79–88.
Marken,, P. (2013, November 15). Synchronous condensers for transmission systems. Retrieved from http://www.ercot.com/content/meetings/rpg/keydocs/2013/1115/GE_Condensers_Ercot_presentation_(11-15-13).pdf
Martínez Ceseña,, E. A., Good,, N., & Mancarella,, P. (2015). Electrical network capacity support from demand side response: Techno‐economic assessment of potential business cases for small commercial and residential end‐users. Energy Policy, 82, 222–232. https://doi.org/10.1016/j.enpol.2015.03.012
Martínez Ceseña,, E. A., Turnham,, V., & Mancarella,, P. (2016). Regulatory capital and social trade‐offs in planning of smart distribution networks with application to demand response solutions. Electric Power Systems Research, 141, 63–72. https://doi.org/10.1016/j.epsr.2016.07.001
Matevosyan,, J. (2020, February 25). Inertia trends in ERCOT. ESIG. Retrieved from https://www.esig.energy/inertia-trends-in-ercot/
Matevosyan,, J., Badrzadeh,, B., Prevost,, T., Quitmann,, E., Ramasubramanian,, D., Urdal,, H., Achilles,, S., MacDowell,, J., Huang,, S. H., Vital,, V., O`Sullivan,, J., & Quint,, R. (2019). Grid‐forming inverters: Are they the Key for high renewable penetration? IEEE Power and Energy Magazine, 17(6), 89–98. https://doi.org/10.1109/MPE.2019.2933072
Mazza,, A., Bompard,, E., & Chicco,, G. (2018). Applications of power to gas technologies in emerging electrical systems. Renewable and Sustainable Energy Reviews, 92, 794–806. https://doi.org/10.1016/j.rser.2018.04.072
Meegahapola,, L., Bu,, S., Wadduwage,, D. P., Chung,, C. Y., & Yu,, X. (2020). Review on oscillatory stability in power grids with renewable energy sources: Monitoring, analysis, and control using synchrophasor technology. IEEE Transactions on Industrial Electronics, 68, 1–1, 531. https://doi.org/10.1109/TIE.2020.2965455
Meegahapola,, L. & Flynn,, D. (2015). Investigation of frequency stability during high penetration of CCGTs and variable‐speed wind generators in electricity networks. 2015 IEEE Power Energy Society General Meeting, 1–5. https://doi.org/10.1109/PESGM.2015.7286176
Meegahapola,, L., Littler,, T., & Perera,, S. (2013). Capability curve based enhanced reactive power control strategy for stability enhancement and network voltage management. International Journal of Electrical Power %26 Energy Systems, 52, 96–106. https://doi.org/10.1016/j.ijepes.2013.03.036
Meegahapola,, L., Sguarezi,, A., Bryant,, J. S., Gu,, M., Conde,, D. E. R., & Cunha,, R. B. A. (2020). Power system stability with power‐electronic converter interfaced renewable power generation: Present issues and future trends. Energies, 13(13), 3441. https://doi.org/10.3390/en13133441
Miller,, N., Lew,, D., Piwko,, R., Hannett,, L., Achilles,, S., MacDowell,, J., Richwine,, M., & Wilson,, D. (2017). Technology capabilities for fast frequency response (Consulting Report; p. 181). GE Energy Consulting. Retrieved from https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Reports/2017/2017-03-10-GE-FFR-Advisory-Report-Final-2017-3-9.pdf
Miller,, N. W., & Sanchez‐gasca,, J. J. (2008). Modeling of GE wind turbine‐generators for grid studies. GE.
Moreno,, R., Barroso,, L. A., Rudnick,, H., Mocarquer,, S., & Bezerra,, B. (2010). Auction approaches of long‐term contracts to ensure generation investment in electricity markets: Lessons from the Brazilian and Chilean experiences. Energy Policy, 38(10), 5758–5769. https://doi.org/10.1016/j.enpol.2010.05.026
Moreno,, R., Street,, A., Arroyo,, J. M., & Mancarella,, P. (2017). Planning low‐carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2100), 20160305. https://doi.org/10.1098/rsta.2016.0305
Moreno,, R., Moreira,, R., & Strbac,, G. (2015). A MILP model for optimising multi‐service portfolios of distributed energy storage. Applied Energy, 137, 554–566. https://doi.org/10.1016/j.apenergy.2014.08.080
Moreno,, R., Pudjianto,, D., & Strbac,, G. (2013). Transmission network investment with probabilistic security and corrective control. IEEE Transactions on Power Systems, 28(4), 3935–3944. https://doi.org/10.1109/TPWRS.2013.2257885
National Grid. (2016). Enhanced frequency response (p. 29). Author. Retrieved from https://www.nationalgrid.com/sites/default/files/documents/Enhanced%20Frequency%20Response%20FAQs%20v5.0_.pdf
National Grid. (2017). Roadmap for frequency response and reserve. Author. Retrieved from https://www.nationalgrideso.com/sites/eso/files/documents/Product%20Roadmap%20for%20Frequency%20Response%20and%20Reserve.pdf
National Grid. (2018). Product roadmap for reactive power. National Grid ESO. Retrieved from https://www.nationalgrid.com/sites/default/files/documents/National%20Grid%20SO%20Product%20Roadmap%20for%20Reactive%20Power.pdf
National Grid ESO. (2019). Technical report on the events of 9 August 2019 (p. 37). Author. Retrieved from https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_final.pdf
Naughton,, J., Wang,, H., Riaz,, S., Cantoni,, M., & Mancarella,, P. (2020). Optimization of multi‐energy virtual power plants for providing multiple market and local network services. Electric Power Systems Research, 189, 106775. https://doi.org/10.1016/j.epsr.2020.106775
NERC. (2015). Essential reliability services task force measures framework report. North American Electric Reliability Corporation (NERC). Retrieved from https://www.nerc.com›comm›Other›ERSTFFrameworkReport‐Final
NERC. (2017). Integrating inverter‐based resources into low short circuit strength systems. Author. Retrieved from https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Item_4a._Integrating%20_Inverter‐Based_Resources_into_Low_Short_Circuit_Strength_Systems_‐_2017‐11‐08‐FINAL.pdf
NERC. (2018). Short‐circuit modelling and system strength white paper. Author. Retrieved from https://www.nerc.com
Ørum,, E., Kuivaniemi,, M., Laasonen,, M., Bruseth,, A. I., Jansson,, E. A., Danell,, A., Elkington,, K., & Modig,, N. (2018). Future system inertia (Technical Report No. V1). ENTSO‐E. Retrieved from https://docs.entsoe.eu/dataset/nordic-report-future-system-inertia/resource/7cc1911d-daa5-4488-b6bb-1baa22fe35f1
Pal,, B., & Chaudhuri,, B. (2005). Power system stabilizers. In Robust control in power systems (pp. 59–78). Springer US. https://doi.org/10.1007/0-387-25950-3_5
Palone,, F., Gatta,, F. M., Geri,, A., Lauria,, S., & Maccioni,, M. (2019). New synchronous condenser—Flywheel systems for a decarbonized Sardinian power system. 2019 IEEE Milan PowerTech, 1–6. https://doi.org/10.1109/PTC.2019.8810780
Papavasiliou,, A., & Smeers,, Y. (2017). Remuneration of flexibility using operating reserve demand curves: A case study of Belgium. The Energy Journal, 38(6), 105–136. Retrieved from https://ideas.repec.org/a/aen/journl/ej38-6-papavasiliou.html
Parkinson,, G. (2019, November 29). The day rooftop solar met two thirds of South Australia`s total demand. RenewEconomy. Retrieved from https://reneweconomy.com.au/the-day-rooftop-solar-met-two-thirds-of-south-australias-total-demand-67549/
Pattabiraman,, D., Lasseter,, R. H., & Jahns,, T. M. (2018). Comparison of grid following and grid forming control for a high inverter penetration power system. 2018 IEEE Power Energy Society General Meeting (PESGM), 1–5. https://doi.org/10.1109/PESGM.2018.8586162
Pipelzadeh,, Y., Moreno,, R., Chaudhuri,, B., Strbac,, G., & Green,, T. C. (2017). Corrective control with transient assistive measures: Value assessment for Great Britain transmission system. IEEE Transactions on Power Systems, 32(2), 1638–1650. https://doi.org/10.1109/TPWRS.2016.2598815
Pratt,, B. W., & Erickson,, J. D. (2020). Defeat the peak: Behavioral insights for electricity demand response program design. Energy Research %26 Social Science, 61, 101352. https://doi.org/10.1016/j.erss.2019.101352
Procopiou,, A. T., & Ochoa,, L. F. (2017). Voltage control in PV‐rich LV networks without remote monitoring. IEEE Transactions on Power Systems, 32(2), 1224–1236. https://doi.org/10.1109/TPWRS.2016.2591063
Püschel‐Løvengreen,, S., Ghazavi Dozein,, M., Low,, S., & Mancarella,, P. (2020). Separation event‐constrained optimal power flow to enhance resilience in low‐inertia power systems. Electric Power Systems Research, 189, 106678. https://doi.org/10.1016/j.epsr.2020.106678
Ruttledge,, L., & Flynn,, D. (2016). Emulated inertial response from wind turbines: Gain scheduling and resource coordination. IEEE Transactions on Power Systems, 31(5), 3747–3755. https://doi.org/10.1109/TPWRS.2015.2493058
Ruttledge,, L., O`Sullivan,, J., Miller,, N., & Flynn,, D. (2013). Frequency response of power systems with variable speed wind turbines. 2013 IEEE Power Energy Society General Meeting, 1–1. https://doi.org/10.1109/PESMG.2013.6672214
Schachter,, J. A., Mancarella,, P., Moriarty,, J., & Shaw,, R. (2016). Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation. Energy Policy, 97, 439–449. https://doi.org/10.1016/j.enpol.2016.07.038
Skinner,, B., Mancarella,, P., Vrakopoulou,, M., & Hiskens,, I. (2020). Incorporating new power system security paradigms into low‐carbon electricity markets. The Electricity Journal, 33(9), 106837. https://doi.org/10.1016/j.tej.2020.106837
Statkraft. (2020, December 20). Statkraft unveils Ireland`s first battery project. Retrieved from https://www.statkraft.ie/media/news/20182/statkraft-unveils-irelands-first-battery-project/
Strbac,, G., Aunedi,, M., Konstantelos,, I., Moreira,, R., Teng,, F., Moreno,, R., Pudjianto,, D., Laguna,, A., & Papadopoulos,, P. (2017). Opportunities for energy storage: Assessing whole‐system economic benefits of energy storage in future electricity systems. IEEE Power and Energy Magazine, 15(5), 32–41. https://doi.org/10.1109/MPE.2017.2708858
Sun,, Y., de Jong,, E. C. W. (. E.)., Wang,, X., Yang,, D., Blaabjerg,, F., Cuk,, V., & Cobben,, J. F. G. (. S.). (2019). The impact of PLL dynamics on the low inertia power grid: A case study of Bonaire Island power system. Energies, 12(7), 1259. https://doi.org/10.3390/en12071259
Tan,, Y., Meegahapola,, L., & Muttaqi,, K. M. (2016). A suboptimal power‐point‐tracking‐based primary frequency response strategy for DFIGs in hybrid remote area power supply systems. IEEE Transactions on Energy Conversion, 31(1), 93–105. https://doi.org/10.1109/TEC.2015.2476827
Tan,, Y., Muttaqi,, K. M., Ciufo,, P., & Meegahapola,, L. (2017). Enhanced frequency response strategy for a PMSG‐based wind energy conversion system using ultracapacitor in remote area power supply systems. IEEE Transactions on Industry Applications, 53(1), 549–558. https://doi.org/10.1109/TIA.2016.2613074
Tayyebi,, A., Groß,, D., Anta,, A., Kupzog,, F., & Dörfler,, F. (2019). Interactions of grid‐forming power converters and synchronous machines. ArXiv:1902.10750 [Math]. Retrieved from http://arxiv.org/abs/1902.10750
Wang,, H., Riaz,, S., & Mancarella,, P. (2020). Integrated techno‐economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi‐market co‐optimization. Applied Energy, 259, 114142. https://doi.org/10.1016/j.apenergy.2019.114142
Wirth,, H. (2020). Recent facts about photovoltaics in Germany (p. 100). Fraunhofer ISE Retrieved from https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-germany.html
Xin,, H., Liu,, Y., Wang,, Z., Gan,, D., & Yang,, T. (2013). A new frequency regulation strategy for photovoltaic systems without energy storage. IEEE Transactions on Sustainable Energy, 4(4), 985–993. https://doi.org/10.1109/TSTE.2013.2261567
Yang,, G. (2017). Studies on low inertia systems and application of synchronous condensers. Retrieved from http://www.windenergydenmark.dk/Files/Images/Wind-Energy-Denmark-2015/Presentations-2017/3-Guangya-Yang_-SCAPP_presentation_20171002WED-yes-public.pdf
Zhang,, L., Clegg,, S., & Portugal,, E. (2017, August). Modeling of electrolyzers in hydrogen vehicle refueling stations for provision of ancillary services. Conference: IREP`2017 Symposium. Conference: IREP`2017 Symposium, Espinho, Portugal. Retrieved from https://www.researchgate.net/publication/320241136_Modeling_of_electrolyzers_in_hydrogen_vehicle_refueling_stations_for_provision_of_ancillary_services
Zhou,, B., Littler,, T., Meegahapola,, L., & Zhang,, H. (2016). Power system steady‐state analysis with large‐scale electric vehicle integration. Energy, 115, 289–302. https://doi.org/10.1016/j.energy.2016.08.096
Zhou,, Y., Mancarella,, P., & Mutale,, J. (2016). Framework for capacity credit assessment of electrical energy storage and demand response. Transmission Distribution IET Generation, 10(9), 2267–2276. https://doi.org/10.1049/iet-gtd.2015.0458
Zhou,, Y., Panteli,, M., Moreno,, R., & Mancarella,, P. (2018). System‐level assessment of reliability and resilience provision from microgrids. Applied Energy, 230, 374–392. https://doi.org/10.1016/j.apenergy.2018.08.054