Tesla, N. The transmission of electrical energy without wires. The Thirteenth Anniversary Number of the ElectricalWorld and Engineer. Breckenridge, CO: 21st Century Books; 1904.
Tesla, N. Experiments with Alternate Current of High Potential and High Frequency. New York, NY: McGraw Publishing Co.; 1904.
Brown, WC. The history of power transmission by radio waves. IEEE Trans MTT. 1984, 32:1230–1242.
Brown, WC. The history of the development of the rectenna. Proceedings of SPS Microwave Systems Workshop at JSC‐NASA.1980, 271–280.
Brown, WC. Adapting microwave techniques to help solve future energy problems. 1973 G‐MTT International Microwave Symposium Digest of Technical Papers. 1973, 189–191.
Dickinson, RM.. Performance of a high‐power, 2.388‐GHz receiving array in wireless power transmission over 1.54 km. 1976 MTT‐S International Microwave Symposium Digest. 1976, 139–141.
Glaser, PE. Power from the sun: its future. Science. 1968, 162:857–886.
Matsumoto, H. Research on solar power station and microwave power transmission in Japan: review and perspectives. IEEE Microwave Magazine. 2002, 3:36–45.
Matsumoto, H, Kaya, N, Fujita, M, Fujino, Y, Fujiwara, T, Sato, T. MILAX airplane experiment and model airplane [in Japanese]. Proceedings of the 11th ISAS Space Energy Symposium. 1993, 47–52.
Fujino, Y, Itoh, T, Fujita, M, Kaya, N, Matsumoto, H, Kawabata, K, Sawada, H, Onodera, T. A rectenna for MILAX. Proceedings of Wireless Power Transmission Conference ‘93. 1993, 273–277.
Schlesak, JJ, Alden, A, Ohno, T. A microwave powered high altitude platform. IEEE MTT‐S International Symposium Digest. 1988, 283–286.
Nagatomo, M, Itoh, K. An evolutionary satellite power system for international demonstration in developing nations. Proceedings of SPS’91. 1991, 356–363.
McSpadden, JO, Mankins, JC. Space solar power programs and microwave wireless power transmission technology. IEEE Microwave Magazine. 2002, 3:46–57.
Fuse, Y, Saito, T, Mihara, S, IJichi, K, Namura, K, Honma, Y, Sasaki, T, Ozawa, Y, Fujiwara, E, Fujiwara, T. Microwave energy transmission program for SSPS. Proceedings of International Union of Radio Science (URSI) General Assembly 2011, Proceeding CD‐ROM CHGBDJK‐2.pdf; 2011.
Sasaki, S, Tanaka, K, Kawasaki, S, Shinohara, N, Higuchi, K, Okuizumi, N, Senda, K, Ishimura, K. Conceptual study of SSPS demonstration experiment. Radio Sci Bull. 2004, 310:9–14.
Basic plan for space policy—wisdom of Japan moves space. Available at: http://www.kantei.go.jp/jp/singi/utyuu/basic_plan.pdf. (Accessed July 20, 2012).
Homma, Y, Sasaki, T, Namura, K, Sameshima, F, Ishikawa, T, Sumino, H, Shinohara, N. New phased array and rectenna array systems for microwave power transmission research. Proceedings of 2011 IEEE MTT‐S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS‐IWPT2011). 2011, 59–62.
Ishikawa, T, Shinohara, N. Study on optimization of microwave power beam of phased array antenna for SPS. Proceedings of 2011 IEEE MTT‐S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS‐IWPT2011). 2011, 153–156.
Kurs, A, Karalis, A, Moffatt, R, Joannopoulos, JD, Fisher, P, Soljacic, M. Wireless power transfer via strongly coupled magnetic resonances. Science. 2007, 317:83–86.
Wireless Power Consortium. Available at: http://www.wirelesspowerconsortium.com/. (Accessed July 20, 2012).
Hino Global. Available at: http://hino.dga.jp/i‐viewer_s/?p_no=7%26m_p=20%26p_id=1983%26file_name=http%3A%2F%2Fwww.hino‐global.com%2Fpdf%2Fhinorep2007_e.pdf%26t=HINO+Report%26kw=IPT+hybrid. (Accessed July 20, 2012).
Showa Aircraft Industry Co., Ltd. Available at: http://www.showa‐aircraft.co.jp/products/EV/kyuuden.html[in Japanese]. (Accessed July 20, 2012).
Takahashi S.Wireless chargingwith inductive coupling for electric vehicle [in Japanese]. In: Hori, Y, Yokoi, Y, supervisors. Wireless Power Transfer and Infrastructure Construction for Electric Vehicles. Tokyo, Japan: CMC Publication; 2011, 47–55.
Ahn, S, Kim, J. Magnetic field design for high efficient and low EMF wireless power transfer in on‐line electric vehicle. Proceedings of EuCAP2011. 2011, 4148–4151.
Hanazawa, M, Ohira, T. Power transfer for a running automobile. Proceedings of 2011 IEEE MTT‐S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS‐IWPT2011). 2011, 77–80.
Fast Company. Available at: http://www.fastcompany.com/blog/kit‐eaton/technomix/qualcomm‐teases‐visionwireless‐charging‐future. (Accessed July 20, 2012).
Miyamoto, T, Komiyama, S, Mita, H, Fujimaki, K. Wireless power transfer system with a simple receiver coil. Proceedings of 2011 IEEE MTT‐S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS‐IWPT2011). 2011, 131–134.
Inagaki, N, Hori, S. Classification and characterization of wireless power transfer systems of resonance method based on equivalent circuit derived from even and odd mode reactance functions. Proceedings of 2011 IEEE MTT‐S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS‐IWPT2011); 2011, 115–118.
Hirayama, H, Ozawa, T, Hiraiwa, Y, Kikuma, N, Sakakibara, K. A consideration of electro‐magnetic resonant coupling mode in wireless power transmission. IEICE Electron Express. 2009, 6:1421–1425.
Shinohara, N, Mitani, T, Matsumoto, H. Study on ubiquitous power source with microwave power transmission. Proceedings of International Union of Radio Science (URSI) General Assembly 2005, Proceeding CD‐ROM C07.5(01145).pdf; 2005.
Shinohara, N, Matsumoto, H, Hashimoto, K. Phase‐controlled magnetron development for SPORTS: space power radio transmission system. Radio Sci Bull. 2004, 310:29–35.
Mitani, T, Yamakawa, H, Shinohara, N, Hashimoto, K, Kawasaki, S, Takahashi, F, Yonekura, H, Hirano, T, Fujiwara, T, Nagano, K. Demonstration experiment of microwave power and information transmission from an airship. Proceedings of 2nd International Symposium on Radio System and Space Plasma 2010. 2010, 157–160.
Sample, AP, Smith, JR. Experimental results with two wireless power transfer systems. Proceedings of RWS2009, MO2A-5, 2009, 16–18.
Smith, JR. Mapping the space of wirelessly powered systems. Proceedings of IMS 2010 Workshops, WFB‐3; 2010.
Powercast Corporation. Available at: http://www.powercastco.com/. (Accessed July 20, 2012).
Shinohara, N. Beam efficiency of wireless power transmission via radio waves from short range to long range. J Kor Inst Electromagn Eng Sci. 2011, 10:224–230.
Shinohara, N.. Wireless charging system of electric vehicle with GaN Schottky diodes. IMS2011 Workshop WFA, CD‐ROM; 2011.
Shinohara, N, Miyata, Y, Mitani, T, Niwa, N, Takagi, K, Hamamoto, K, Ujigawa, S, Ao, J‐P, Ohno, Y. New application of microwave power transmission for wireless power distribution system in buildings. Proceedings of Asia‐ Pacific Microwave Conference 2008) CD‐ROM H2‐08.pdf; 2008.
Gutmann, RJ, Gworek, RB. Yagi–Uda receiving elements in microwave power transmission system rectennas. J Microwave Power. 1979, 14:313–320.
Yoo, TW, Chang, K. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans MTT. 1992, 40:1259–1266.