Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 2007, 315:801–804.
Bailey, JE. Toward a science of metabolic engineering. Science 1991, 252:1668–1675.
Stephanopoulos, G. Metabolic fluxes and metabolic engineering. Metab Eng 1999, 1:1–11.
Tyo, KE, Alper, HS, Stephanopoulos, GN. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 2007, 25:132–137.
Keasling, JD. Manufacturing molecules through metabolic engineering. Science 2010, 330:1355–1358.
Hill, J, Nelson, E, Tilman, D, Polasky, S, Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 2006, 103:11206–11210.
Ethanol Industry Overview. Renewable Fuels Association. Available at: http://www.ethanolrfa.org/pages/statistics. (Accessed June 14, 2011).
Production of biofuels in the world in 2009. Biofuels Platform. Available at: http://www.biofuels-platform.ch/en/infos/production.php. (Accessed June 14, 2011)
Fargione, J, Hill, J, Tilman, D, Polasky, S, Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319:1235–1238.
Pimentel, D, Patzek, TW. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 2005, 14:65–76.
Balat, M, Balat, H. A critical review of bio‐diesel as a vehicular fuel. Energ Convers Manag 2008, 49:2727–2741.
Joyce, AR, Palsson, BO. The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 2006, 7:198–210.
Trinh, C, Wlaschin, A, Srienc, F. Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 2009, 81:813–826.
Bosl, W. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. BMC Syst Biol 2007, 1:13.
Leonard, E, Nielsen, D, Solomon, K, Prather, KJ. Engineering microbes with synthetic biology frameworks. Trends Biotechnol 2008, 26:674–681.
Alper, H, Stephanopoulos, G. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab Eng 2007, 9:258–267.
Alper, H, Moxley, J, Nevoigt, E, Fink, GR, Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314:1565–1568.
Atsumi, S, Cann, AF, Connor, MR, Shen, CR, Smith, KM, Brynildsen, MP, Chou, KJY, Hanai, T, Liao, JC. Metabolic engineering of Escherichia coli for 1‐butanol production. Metab Eng 2008, 10:305–311.
Inui, M, Suda, M, Kimura, S, Yasuda, K, Suzuki, H, Toda, H, Yamamoto, S, Okino, S, Suzuki, N, Yukawa, H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 2008, 77:1305–1316.
Shen, CR, Lan, EI, Dekishima, Y, Baez, A, Cho, KM, Liao, JC. Driving forces enable high‐titer anaerobic 1‐butanol synthesis in Escherichia coli. Appl Environ Microbiol 2011, 77:2905–2915.
Bond‐Watts, BB, Bellerose, RJ, Chang, MCY. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 7:222–227.
Atsumi, S, Hanai, T, Liao, JC. Non‐fermentative pathways for synthesis of branched‐chain higher alcohols as biofuels. Nature 2008, 451:86–89.
Bastian, S, Liu, X, Meyerowitz, JT, Snow, CD, Chen, MMY, Arnold, FH. Engineered ketol‐acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2‐methylpropan‐1‐ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 13:345–352.
Perlack, RD, Wright, LL, Turhollow, AF, Graham, RL, Stokes, BJ, Erbach, DC. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion‐ton annual supply. 2005.
Jeffries, TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 2006, 17:320–326.
Matsushika, A, Inoue, H, Kodaki, T, Sawayama, S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009, 84:37–53.
Jin, Y‐S, Laplaza, JM, Jeffries, TW. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 2004, 70:6816–6825.
Galazka, JM, Tian, C, Beeson, WT, Martinez, B, Glass, NL, Cate, JHD. Cellodextrin transport in yeast for improved biofuel production. Science 2010, 330:84–86.
Ha, S‐J, Galazka, JM, Rin Kim, S, Choi, J‐H, Yang, X, Seo, J‐H, Louise Glass, N, Cate, JHD, Jin, Y‐S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci 2011, 108:504–509.
Cho, H, Cronan, JE. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem 1995, 270:4216–4219.
Steen, EJ, Kang, Y, Bokinsky, G, Hu, Z, Schirmer, A, McClure, A, del Cardayre, SB, Keasling, JD. Microbial production of fatty‐acid‐derived fuels and chemicals from plant biomass. Nature 2010, 463:559–562.
Lu, X, Vora, H, Khosla, C. Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metab Eng 2008, 10:333–339.
Lennen, RM, Braden, DJ, West, RM, Dumesic, JA, Pfleger, BF. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 2010, 106:193–202.
Liu, X, Sheng, J, Curtiss, III R. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci 2011, 108:6899–6904.
Liu, T, Vora, H, Khosla, C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 2010, 12:378–386.
Kalscheuer, R, Stolting, T, Steinbuchel, A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 2006, 152:2529–2536.
Huo, Y-X, Cho, KM, Rivera, JGL, Monte, E, Shen, CR, Yan, Y, Liao, JC. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 2011, 29:346–351.
Bar‐Even, A, Noor, E, Lewis, NE, Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci 2010, 107:8889–8894.