Stacy, SM. Proving the principle: a history of the Idaho national engineering and environmental laboratory 1949–1999. DOE/ID‐10799. Idaho Falls: Idaho Operations Office of the Department of Energy; 2000, 64–73.
International Atomic Energy Agency, Power Reactor Information System (PRIS). Available at: <http://www.iaea.org/programmes/a2>. (Accessed November 23, 2012).
World Nuclear Association. Safety of nuclear power reactors. Information Paper 6. London: WNA; October 2012. Available at: <http://www.world‐nuclear.org>. (Accessed November 23, 2012).
Marques, JG. Safety of nuclear fission reactors: learning from accidents. In: Lehr, JH, Krivit, SB, Kingery, TB, eds. Nuclear Energy Encyclopedia: Science, Technology and Applications. Hoboken: John Wiley %26 Sons; 2011, 127–149. doi:10.1002/9781118043493.ch15.
Frisch, W, Gros, G. Improving the safety of future nuclear fission power plants. Fusion Eng Des 2001, 56–57:83–93. doi:10.1016/S0920‐3796(01)00238‐1.
Hore‐Lacy, I. Nuclear Energy in the 21st Century. 2nd ed. London: World Nuclear University Press; 2010, 42–51. ISBN 978‐0‐9550784‐1‐5.
Marques, JG. Evolution of nuclear fission reactors: third generation and beyond. Energ Convers Manage 2010, 51:1774–1780. doi:10.1016/j.enconman.2009.12.043.
Vujic, J, Antic, DP, Vukmirovic, Z. Environmental impact and cost analysis of coal versus nuclear power: the U.S. case. Energy 2012, 45:31–42. doi:10.1016/j.energy.2012.02.011.
Cooper, JR, Randle, K, Sokhi, RS. Radioactice Releases in the Environment. Chichester: John Wiley %26 Sons; 2001. ISBN 0‐471‐89924‐0.
Papastefanou, C. Escaping radioactivity from coal‐fired power plants due to coal burning and the associated hazards: a review. J Environ Radioact 2010, 101:191–200. doi:10.1016/j.jenvrad.2009.11.006.
Lamarsh, JR, Baratta, AJ. Introduction to Nuclear Engineering. 3rd ed. Upper Saddle River: Prentice Hall; 2001, 187. ISBN 0‐201‐82498‐1.
Nuclear Energy Agency. Very High Burn‐ups in Light Water Reactors. Paris: NEA; 2006. ISBN 92‐64‐02303‐8.
Rondinella, VV, Wiss, T. The high burn‐up structure in nuclear fuel. Mater Today 2010, 13:24–32.
US Department of Energy Research Advisory Committee and the Generation IV International Forum. A technology roadmap for generation IV nuclear energy systems. GIF‐002–00. DOE and GIF, 2002. Available at: <http://gif.inel.gov/>. (Accessed November 23, 2012).
Massachusetts Institute of Technology. The Future of Nuclear Fuel Cycle. Cambridge: MIT; 2010. ISBN 978‐0‐9828008‐1‐2.
Massachusetts Institute of Technology. The Future of Coal. Cambridge: MIT; 2007. ISBN 978‐0‐615‐14092‐6.
McKay, AD, Miezitis, Y. Australia`s Uranium Resources, Geology and Development of Deposits. AGSO—Geoscience Australia, Mineral Resource Report 1. Canberra: Australian Department of Industry, Science %26 Resources; 2001. ISBN 0‐642‐46716‐1.
Kennedy, VS. Thermal Pollution. Encyclopedia of Energy. Vol. 6. Burlington: Elsevier Academic; 2004, 79–89. doi:10.1016/B0‐12‐176480‐X/00416‐2.
Vallero, DA. Thermal pollution. In: Letcher TM, Vallero DA, eds. Waste: A Handbook for Management. Burlington: Elsevier Academic; 2011, 425–443. doi:10.1016/B978‐0‐12‐381475‐3.10028‐2.
Sovacool, BK. Valuing the greenhouse gas emissions from nuclear power: a critical survey. Energy Policy 2008, 36:2950–2963. doi:10.1016/j.enpol.2008.04.017.
United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly, Volume I, Annex B: Exposures From Natural Radiation Sources. New York: United Nations Publishing; 2000, 140.
United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly. Vol. I. New York: United Nations Publishing; 2000.
Hu, QH, Weng, JQ, Wang, JS. Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 2010, 101:426–437. doi:10.1016/j.jenvrad.2008.08.004.
United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly, Volume I, Annex C: Exposures to the Public from Man‐Made Sources of Radiation. New York: United Nations Publishing; 2000, 158–180.
Neeb, KH. The Radiochemistry of Nuclear Power Plants with Light Water Reactors. Berlin: Walter de Gruyter %26 Co.; 1997, 137–144. ISBN 3‐11‐013242‐7.
Olander, D. Nuclear fuels—present and future. J Nucl Mater 2009, 389:1–22. doi:10.1016/j.jnucmat.2009.01.297.
Till, JE, Grogan, HA. Radiological Risk Assessment and Environmental Analysis. Oxford: Oxford University Press; 2008, 46. ISBN 978‐0‐19‐512727‐0.
Farrell, AE. Environmental impacts of electricity. In: Encyclopedia of Energy. Vol 2. Burlington: Elsevier Academic; 2004, 165–175. doi:10.1016/B0‐12‐176480‐X/00504‐0.
Vrijheid, M, Cardis, E, Blettner, M, Gilbert, E, Hakama, M, Hill, C, Howe, G, Kaldor, J, Muirhead, CR, Schubauer‐Berigan, M, et al. The 15‐country collaborative study of cancer risk among radiation workers in the nuclear industry: design, epidemiological methods and descriptive results. Radiat Res 2007, 167:361–379.
Silverman, L, Morrison, DL, Ritzman, RL. Fission product behavior and retention in containment systems. In: Thomson, TJ, Beckerley, JG, eds. The Technology of Reactor Safety. Vol. 2. Cambridge: The MIT Press; 1973, 619–697.
Eisenbud, M, Gesell, T. Environmental Radioactivity from Natural, Industrial, and Military Sources. 4th ed. San Diego: Academic Press; 1997, 244–265. ISBN 978‐0‐12‐235154‐9.
Nuclear Regulatory Commission. Accident Source Terms for Light‐Water Nuclear Power Plants. NUREG‐1465, Washington: NRC; 1995, 10.
Alpert, DJ, Chanin, DI, Ritchie, LT. Relative Importance of Individual Elements to Reactor Accident Consequences Assuming Equal Release Fractions. SAND85–2575, NUREG/CR‐4467. Albuquerque: Sandia National Laboratories; 1986, 13.
Ashbaugh, SG, Wagner, KC, Longmire, P, Gauntt, RO, Goldmann, AS, Powers, DA. Assessment of Severe Accident Source Terms in Pressurized‐Water Reactors with a 40% Mixed‐Oxide and 60% Low‐Enriched Uranium Core Using MELCOR 1.8.5. SAND2008–6665. Albuquerque: Sandia National Laboratories; 2008.
Powers, DA, Leonard, MT, Gauntt, RO, Lee, RY, Salay, M. Accident Source Terms for Light‐Water Nuclear Power Plants Using High‐Burnup or MOX Fuel. SAND2011–0128. Albuquerque: Sandia National Laboratories; 2011.
International Atomic Energy Agency. INES The International Nuclear and Radiological Event Scale User`s Manual. Vienna: IAEA; 2008.
Talbott, EO, Youk, AO, McHugh, KP, Shire, JD, Zhang, A, Murphy, BP, Engberg, RA. Mortality among the residents of the Three Mile Island accident area: 1979–1992. Environ Health Persp 2000, 108:545–552.
Hatch, MC, Beyea, J, Nieves, JW, Susser, M. Cancer near the Three Mile Island nuclear plant: radiation emissions. Am J Epidemiol 1990, 132:397–412.
Hatch, MC, Wallenstein, S, Beyea, J, Nieves, JW, Susser, M. Cancer rates after the Three Mile Island nuclear accident and proximity of residence to the plant. Am J Public Health 1991, 81:719–724.
Wing, S, Richardson, D, Armstrong, D, Crawford‐Brown, D. A reevaluation of cancer incidence near the Three Mile Island nuclear plant: the collision of evidence and assumptions. Environ Health Persp 1997, 105:52–57.
Talbott, EO, Youk, AO, McHugh‐Pemu, KP, Zborowski, JV. Long‐term follow‐up of the residents of the Three Mile Island accident area: 1979–1998. Environ Health Persp 2003, 111:341–348.
United Nations Scientific Committee on the Effects of Atomic Radiation. Exposures and Effects of the Chernobyl Accident, UNSCEAR 2000. Vol. 2: Effects, Annex J. New York: United Nations Publishing; 2000, 456–457.
World Health Organization. Health Effects of the Chernobyl Accident and Special Health Care Programmes. Geneva: WHO; 2006. ISBN 978‐92‐4‐159417‐2.
Nuclear Energy Agency. Chernobyl: Assessment of Radiological and Health Impacts. Paris: NEA; 2002.
Rahu, M. Health effects of the Chernobyl accident: fears, rumours and the truth. Eur J Cancer 2003, 39:295–299. doi:10.1016/S0959‐8049(02)00764‐5.
International Atomic Energy Agency. Environmental Consequences of the Chernobyl Accident and Their Remediation: Twenty Years of Experience. Vienna: IAEA; 2006. ISBN 92‐0‐114705‐8.
Bebeshko, VG, Bazyka, DA, Buzunov, V. Chernobyl: current situation of non‐cancer diseases. Int Congr Ser 2007, 1299:54–59.
INES rating on the events in Fukushima Dai‐ichi Nuclear Power Station by the Tohoku district—off the Pacific ocean earthquake (press release). Tokyo: Nuclear and Industry Safety Agency (NISA); April 12, 2011. Available at: <http://www.nisa.meti.go.jp/english/files/en20110412‐4.pdf>. (Accessed June 1, 2012).
Chino, M, Nakayama, H, Nagai, H, Terada, H, Katata, G, Yamazawa, H. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J Nucl Sci Technol 2011, 48:1129–1134. doi:10.1080/18811248.2011.9711799.
Boice, JD. Radiation epidemiology: a perspective on Fukushima. J Radiol Prot 2012, 32:N33–N40. doi:10.1088/0952‐4746/32/1/N33.
World Health Organization. Preliminary Dose Estimation from the Nuclear Accident after the 2011 Great East Japan Earthquake and Tsunami. Geneva: WHO; 2012. ISBN 978‐92‐4‐150366‐2.
Lawrence Livermore National Laboratory. Livermore Responds to Crisis in Post‐Earthquake. S&TR January/February 2012. Livermore: LLNL. Available at: <https://str.llnl.gov/JanFeb12/JanFeb12.html>. (Accessed November 23, 2012).
Diaz Leon, J, Jaffe, DA, Kaspar, J, Knecht, A, Miller, ML, Robertson, RGH, Schubert, AG. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J Environ Radioact 2011, 102:1032–1038. doi:10.1016/j.jenvrad.2011.06.005.
Carvalho, FP, Reis, MC, Oliveira, JM, Malta, M, Silva, L. Radioactivity from Fukushima nuclear accident detected in Lisbon, Portugal. J Environ Radioact 2012, 114:152–156. doi:10.1016/j.jenvrad.2012.03.005.
Haskin, FE, Camp, AL, Hodge, SA. Perspectives on Reactor Safety. NUREG/CR‐6042, Rev. 1. Washington: NRC; 1997.
International Nuclear Safety Advisory Group. Defence in Depth in Nuclear Safety. INSAG‐10, STI/PUB/1013. Vienna: IAEA; 1999, 4–13. ISBN 92‐0‐103295‐1.
International Atomic Energy Agency. Development of Safety Principles for the Design of Future Nuclear Power Plants. TECDOC‐801. Vienna: IAEA; 1995. ISSN 1011‐4289.
International Nuclear Safety Advisory Group. Basic Safety Principles for Nuclear Power Plants. 75‐INSAG‐3 Rev. 1, STI/PUB/1082. Vienna: IAEA; 1999, 11–12. ISBN 92‐0‐102699‐4.
International Atomic Energy Agency. Status of Advanced Light Water Reactor Designs 2004. TECDOC‐1391, Vienna: IAEA; 2004. ISBN 92‐0‐104804‐1.
Werner, WF, Hirano, M, Kondo, S, Johanson, G, Lanore, JM, Murphy, JA, Schmocker, U. Results and insights from level‐1 probabilistic safety assessments for nuclear power plants in France, Germany, Sweden, Switzerland and the United States. Reliab Eng Syst Safety 1995, 48:165–179. doi:10.1016/0951‐8320(95)00016‐U.
Bengtsson, L, Holmberg, JE, Rossi, J, Knochenhauer, M. Probabilistic Safety Goals for Nuclear Power Plants; Phases 2–4/Final report. NKS‐226. Roskilde: NKS; 2011. ISBN 978‐87‐7893‐296‐9.
Sehgal, BR. Stabilization and termination of severe accidents in LWRs. Nucl Eng Des 2006, 236:1941–1952. doi:10.1016/j.nucengdes.2006.03.040.
Seiler, JM, Tourniaire, B, Defoort, F, Froment, K. Consequences of material effects on in‐vessel retention. Nucl Eng Des 2007, 237:1752–1758. doi:10.1016/j.nucengdes.2007.03.007
World Nuclear Association. Advanced nuclear power reactors. Information Paper 8. London: WNA. April 2012. Available at: <http://www.world‐nuclear.org>. (Accessed November 23, 2012).
Mehta, HS, Pappone, DC. New generation of BWRs. In: Rao, KR, ed. Companion Guide to the ASME Boiler and Pressure Vessel Code. Vol. 3. 3rd ed. doi:10.1115/1.802717.ch58.
Nuclear Regulatory Commission. Final Safety Evaluation Report Related to the Certification of the Advanced Boiling Water Reactor Design. NUREG‐1503, Chapter 19. Washington: NRC; 1993.
Nayak, AK, Sinha, RK. Role of passive systems in advanced reactors. Prog Nucl Energ 2007, 49:486–498. doi:10.1016/j.pnucene.2007.07.007.
General Electric Hitachi. Advanced Boiling Water Reactor Fact Sheet. GEA‐14576E. GE Hitachi, 2008. Available at: <http://www.gepower.com>. (Accessed November 23, 2012).
Federal Register, 62 FR 25800. May 12, 1997.
Berbey, P. Status and Near‐Term Works on the EUR Document—Possible Use by Third Parties. International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century, IAEA‐CN‐164–3S01, Vienna: IAEA; 27–30 October 2009. Available at: <http://www.europeanutilityrequirements.org>. (Accessed November 23, 2012).
GE‐Hitachi Nuclear Energy. ESBWR Design Control Document Tier 2. Chapter 1, 26A6642AD, Revision 4, GEH; 2007.
Hinds, D, Maslak, C. Next generation nuclear energy: the ESBWR. Nucl News 2006, 49:35–40.
International Atomic Energy Agency. Status of Advanced Light Water Reactor Designs 2004. TECDOC‐1391. Vienna: IAEA; 2004, 207–231. ISBN 92‐0‐104804‐1.
Saha, P, Gamble, RE, Shiralkar, BS, Fitch, JR. Applicability of small‐scale integral test data to the 4500MWt ESBWR loss‐of‐coolant accidents. Nucl Eng Des 2009, 239:956–963. doi:10.1016/j.nucengdes.2008.12.006.
Health and Safety Executive. Conclusions of the Fundamental Safety Overview of the ESBWR Nuclear Reactor (Step 2 of the Generic Design Assessment Process). HSE‐GDA/003 2008/41278. London: HSE; March 2008. Available at: <http://www.hse.gov.uk>. (Accessed November 23, 2012).
Health and Safety Executive. New Reactor Build: GEH ESBWR Step 2 PSA Assessment. London: HSE; 2008. Available at: <http://www.hse.gov.uk>. (Accessed November 23, 2012).
Nuclear Regulatory Commission. Combined License Applications for New Reactors. Washington: NRC; 2012. Available at: <http://www.nrc.gov/reactors/new‐reactors/col.html>. (Accessed November 23, 2012).
Ermakov, Y, Rousselot, O. EUR volume 3 AES 92 subset. European Utility Requirements Seminar 2007, Nice, May 15, 2007. Available at: <http://www.europeanutilityrequirements.org>. (Accessed November 23, 2012).
Agrawal, SK, Chauhan, A, Mishra, A. The VVERs at KudanKulam. Nucl Eng Des 2006, 236: 812–835. doi:10.1016/j.nucengdes.2005.09.030.
Khabensky, VB, Granovsky, VS, Bechta, SV, Gusarov, VV. Severe accident management concept of the VVER‐1000 and the justification of corium retention in a crucible‐type core catcher. Nucl Eng Technol 2009, 41:561–574.
Dombrovskii, LA, Mineev, VN, Vlasov, AS, Zaichik, LI, Zeigarnik, YA, Nedorezov, AB, Sidorov, AS. In‐vessel corium catcher of a nuclear reactor. Nucl Eng Des 2007, 237:1745–1751. doi:10.1016/j.nucengdes.2007.03.009.
World Nuclear Association. Nuclear power in India. Information Paper 53. London: WNA; September 2012. Available at: <http://www.world‐nuclear.org>. (Accessed November 23, 2012).
World Nuclear Association. Nuclear power in Bulgaria. Information Paper 87. London: WNA; October 2012. Available at: <http://www.world‐nuclear.org>. (Accessed November 23, 2012).
International Atomic Energy Agency. Status Report 93—VVER–1000 (V‐466B). Vienna: IAEA; 2011. Available at: <http://aris.iaea.org>. (Accessed November 23, 2012).
Dragunov, YG, Ryzhov, SB, Denisov, VP, Mokhov, VA. Prospects for development of VVER‐type pressurized light‐water reactor installations. Therm Eng 2007, 54:343–347.
Mokhov, V, Trunov, N. VVER Reactors: Clean and Reliable Source of Energy in the Past and in the Future. International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century, IAEA‐CN‐164–10KS, Vienna: IAEA, October 27–30, 2009.
World Nuclear Association. Nuclear power in Russia. Information Paper 45. London: WNA; May 2012. Available at: <http://www.world‐nuclear.org>. (Accessed November 23, 2012).
Schulz, TL. Westinghouse AP1000 advanced passive plant. Nucl Eng Des 2006, 236:1547–1557. doi:10.1016/j.nucengdes.2006.03.049.
Health and Safety Executive. Step 3 Probabilistic Safety Analysis of the Westinghouse AP1000. London: HSE; 2009. Available at: <http://www.hse.gov.uk.>. (Accessed November 23, 2012).
Federal Register, 71 FR 4464, January 27, 2006.
Federal Register, 76 FR 82079, December 30, 2011.
Office for Nuclear Regulation. Summary of the Detailed Design Assessment of the Westinghouse Electric Company LLC AP1000 Nuclear Reactor (Step 4 of the Generic Design Assessment process). ONR‐GDA‐SR‐11‐002 Revision 0. Bootle: ONR; 2011. Available at: <http://www.hse.gov.uk.>. (Accessed November 23, 2012).
Westinghouse AP1000 completes phase 1 of Canadian pre‐project design review (press release). Cranberry Township: Westinghouse Electric Company. January 2010. Available at: <http://westinghousenuclear.mediaroom.com.>. (Accessed November 23, 2012).
World Nuclear Association. Nuclear power in China. Information Paper 63. London: WNA; May 2012. Available at: <http://www.world‐nuclear.org.>. (Accessed November 23, 2012).
Chu, IC, Song, CH, Cho, BH, Park, JK. Development of passive flow controlling safety injection tank for APR1400. Nuclear Engineering and Design 2008, 238:200–206.
Kang, KH, Park, RJ, Kima, SK, Suh, KY, Cheung, FB, Remped, JL. Simulant melt experiments on performance of the in‐vessel core catcher. Nucl Eng Des 2007, 237:1803–1813. doi:10.1016/j.nucengdes.2007.07.002.
Kim, SB, Oh, SJ. Severe accident mitigation features of the APR1400. In: Saito, T, Yamashita, J, Ishiwatari, Y, Oka, Y, eds. Advances in Light Water Reactor Technologies. New York: Springer; 2011. ISBN 978‐1‐4419‐7100‐5.
World Nuclear Association. Nuclear power in Korea. Information Paper 81. London: WNA; November 2012. Available at: <http://www.world‐nuclear.org.>. (Accessed November 23, 2012).
World Nuclear Association. Nuclear power in the United Arab Emirates. Information Paper 132. London: WNA; September 2011. Available at: <http://www.world‐nuclear.org.>. (Accessed November 23, 2012).
Tujikura, Y, Oshibe, T, Kijima, K, Tabuchi, K. Development of passive safety systems for next generation PWR in Japan. Nucl Eng Des 2000, 201:61–70. doi:10.1016/S0029‐5493(00)00261‐2.
Mitsubishi Heavy Industries Ltd. Design Control Document for the US‐APWR. Chapter 19, MUAP‐ DC019, Revision 3. Tokyo: MHI; 2011.
Teollisuuden Voima Oyj. Nuclear Power Plant Unit Olkiluoto 3. Helsinki: TVO, 09/2008. Available at: <http://www.tvo.fi.>. (Accessed November 23, 2012).
Areva NP and EDF. Pre‐construction safety report, Chapter 11.4, outputs for the operating installation. UKEPR‐0002–113 Issue 04. Paris and Montrouge: Areva NP and EDF; 2011. Available at: <http://www.epr‐reactor.co.uk/.>. (Accessed November 23, 2012).
Fisher, M. The severe accident mitigation concept and the design measures for core melt retention of the European Pressurized Reactor. Nucl Eng Des 2004, 230:169–180. doi:10.1016/j.nucengdes.2003.11.034.
Bittermann, D, Krugmann, U, Azarian, G. EPR accident scenarios and provisions. Nucl Eng Des 2001, 207:49–57. doi:10.1016/S0029‐5493(00)00425‐8.
Health and Safety Executive. New Reactor Build: EDF/AREVA EPR Step 2 PSA Assessment. London: HSE; 2008. Available at: <http://www.hse.gov.uk.>. (Accessed November 23, 2012).
Health and Safety Executive. New Reactor Build GDA Step 2 Summary of Overseas Regulatory Assessments. London: HSE; March 2008 Available at: <http://www.hse.gov.uk.>. (Accessed November 23, 2012).
Office for Nuclear Regulation. Summary of the Detailed Design Assessment of the Electricité de France SA and AREVA NP SAS UK EPR Nuclear Reactor (Step 4 of the Generic Design Assessment Process). ONR‐GDA‐SR‐11‐001 Revision 0. Bootle: ONR; December 2011. Available at: <http://www.hse.gov.uk.>. (Accessed November 23, 2012).
Nuclear Regulatory Commission. Design Certification Application Review ‐ US EPR. Washington: NRC; 2012. Available at: <http://www.nrc.gov/reactors/new‐reactors/design‐cert/epr.html.>. (Accessed November 23, 2012).
Atomic Energy of Canada Ltd. ACR‐1000 Technical Description Summary. AECL 10820‐01372‐230‐002, Revision 1. Mississauga: AECL; 2010. Available at: <http://canteach.candu.org.>. (Accessed November 23, 2012).
Tapping, RL. Materials performance in CANDU reactors: the first 30 years and the prognosis for life extension and new designs. J Nucl Mater 2008, 383:1–8. doi:10.1016/j.jnucmat.2008.08.030.
Snell, VG, Howieson, JQ. Chernobyl—a Canadian perspective. Mississauga: AECL; 1999. Available at: <http://canteach.candu.org.>. (Accessed November 23, 2012).
Mathew, PM. Severe core damage accident progression within a CANDU calandria vessel. MASCA Seminar 2004, Aix‐en‐Provence, June 10–11, 2004.
Meneley, DA, Blahnik, C, Rogers, JT, Snell, VG, Nijhawan, S. Coolability of Severely Degraded CANDU Cores. AECL‐11110. Mississauga: AECL; 1995.
Health and Safety Executive. Conclusions of the Fundamental Safety Overview of the ACR‐1000 Nuclear Reactor (Step 2 of the Generic Design Assessment Process). HSE‐GDA/001 2008/41268. London: HSE; 2008. Available at: <http://www.hse.gov.uk.>. (Accessed November 23, 2012).
International Atomic Energy Agency. Status Report 68—Enhanced CANDU 6 (EC6). Vienna: IAEA; 2011. Available at: <http://aris.iaea.org.>. (Accessed November 23, 2012).
Canadian Nuclear Safety Commission. Phase 2 Executive Summary: Pre‐Project Design Review of CANDU Energy Enhanced CANDU 6 Reactor—EC6. Ottawa: CNSC; 2012.