Pearson, K. On lines and planes of closest fit to systems of points in space. Philos Mag A 1901, 6: 559–572.

Cauchy, AL. Sur l`équation à l`aide de laquelle on détermine les inégalités séculaires des mouvements des planètes, vol. 9. O‐euvres Complètes (IIème Série); Paris: Blanchard; 1829.

Grattan‐Guinness, I. The Rainbow of Mathematics. New York: Norton; 1997.

Jordan, C. Mémoire sur les formes bilinéaires. J Math Pure Appl 1874, 19: 35–54.

Stewart, GW. On the early history of the singular value decomposition. SIAM Rev 1993, 35: 551–566.

Boyer, C, Merzbach, U. A History of Mathematics. 2nd ed. New York: John Wiley %26 Sons; 1989.

Hotelling, H. Analysis of a complex of statistical variables into principal components. J Educ Psychol 1933, 25: 417–441.

Jolliffe, IT. Principal Component Analysis. New York: Springer; 2002.

Jackson, JE. A User`s Guide to Principal Components. New York: John Wiley %26 Sons; 1991.

Saporta, G, Niang, N. Principal component analysis: application to statistical process control. In: Govaert, G, ed. Data Analysis. London: John Wiley %26 Sons; 2009, 1–23.

Abdi, H. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition(GSVD). In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks: Sage Publications; 2007, 907–912.

Abdi, H. Eigen‐decomposition: eigenvalues and eigenvectors. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks: Sage Publications; 2007, 304–308.

Takane, Y. Relationships among various kinds of eigenvalue and singular value decompositions. In: Yanai, H, Okada, A, Shigemasu, K, Kano, Y, Meulman, J, eds. New Developments in Psychometrics. Tokyo: Springer Verlag; 2002, 45–56.

Abdi, H. Centroid. Wiley Interdisciplinary Reviews: Computational Statistics, 2009, 1: 259–260.

Kruskal, JB. Factor analysis and principal component analysis: Bilinear methods. In: Kruskal, WH, Tannur, JM, eds. International Encyclopedia of Statistics. New York: The Free Press; 1978, 307–330.

Gower, J. Statistical methods of comparing different multivariate analyses of the same data. In: Hodson, F, Kendall, D, Tautu, P, eds. Mathemematics in the Archæological and Historical Sciences. Edinburgh: Edingburh University Press; 1971, 138–149.

Lingoes, J, Schönemann, P. Alternative measures of fit for the Schönemann‐Carrol matrix fitting algorithm. Psychometrika 1974, 39: 423–427.

Abdi, H. RV cofficient and congruence coefficient. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks: Sage Publications; 2007, 849–853.

Dray, S. On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput Stat Data Anal 2008, 52: 2228–2237.

Quenouille, M. Notes on bias and estimation. Biometrika 1956, 43: 353–360.

Efron, B. The Jackknife, the Bootstrap and other Resampling Plans, vol. 83, CMBF‐NSF Regional Conference Series in Applied Mathematics: New York SIAM; 1982.

Abdi, H, Williams, LJ. Jackknife. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks: Sage Publications; 2010, (In press).

Peres‐Neto, PR, Jackson, DA, Somers, KM. How many principal components? stopping rules for determining the number of non‐trivial axes revisited. Comput Stat Data Anal 2005, 49: 974–997.

Cattell, RB. The scree test for the number of factors. Multivariate Behav Res 1966, 1: 245–276.

Kaiser, HF. A note on Guttman`s lower bound for the number of common factors. Br J Math Stat Psychol 1961, 14: 1–2.

O`Toole, AJ, Abdi, H, Deffenbacher, KA, Valentin, D. A low dimensional representation of faces in the higher dimensions of the space. J Opt Soc Am [Ser A] 1993, 10: 405–411.

Geisser, S. A predictive approach to the random effect model. Biometrika 1974, 61: 101–107.

Tennenhaus, M. La régression PLS. Paris: Technip; 1998.

Stone, M. Cross‐validatory choice and assessment of statistical prediction. J R Stat Soc [Ser A] 1974, 36: 111–133.

Wold, S. PLS for multivariate linear modeling. In: van de Waterbeemd, H, ed. Chemometric Methods in Molecular Design. Weinheim: Wiley‐VCH Verlag; 1995, 195–217.

Malinowski, ER. Factor Analysis in Chemistry. 3rd ed. New York: John Wiley %26 Sons; 2002.

Eastment, HT, Krzanowski, WJ. Cross‐validatory choice of the number of components from a principal component analysis. Technometrics 1982, 24: 73–77.

Wold, S. Cross‐validatory estimation of the number of components in factor and principal component analysis. Technometrics 1978, 20: 397–405.

Diaconis, P, Efron, B. Computer intensive methods in statistics. Sci Am 1983, 248: 116–130.

Holmes, S. Using the bootstrap and the *R*_{v} coefficient in the multivariate context. In: Diday, E, ed. Data Analysis, Learning, Symbolic and Numeric Knowledge. New York: Nova Science; 1989, 119–132.

Efron, B, Tibshirani, RJ. An Introduction to the Bootstrap. New York: Chapman and Hall; 1993.

Jackson, DA. Stopping rules in principal aomponents analysis: a comparison of heuristical and statistical approaches. Ecology 1993, 74: 2204–2214.

Jackson, DA. Bootstrapped principal components analysis: a reply to Mehlman *et al*. Ecology 1995, 76: 644–645.

Mehlman, DW, Sheperd, UL, Kelt, DA. Bootstrapping principal components analysis: a comment. Ecology 1995, 76: 640–643.

Abdi, H. Multivariate analysis. In: Lewis‐Beck, M, Bryman, A, Futing, T, eds. Encyclopedia for Research Methods for the Social Sciences. Thousand Oaks, CA: Sage Publications 2003, 669–702.

Kaiser, HF. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23: 187–200.

Thurstone, LL. Multiple Factor Analysis. Chicago, IL: University of Chicago Press; 1947.

Stone, JV. Independent Component Analysis: A Tutorial Introduction. Cambridge: MIT Press; 2004.

Abdi, H. Partial least square regression, Projection on latent structures Regression, PLS‐Regression. Wiley Interdisciplinary Reviews: Computational Statistics, 2 2010, 97–106.

Lebart, L, Fénelon, JP. Statistique et informatique appliquées. Paris: Dunod; 1975.

Benzécri, J‐P. L`analyse des données, Vols. 1 and 2. Paris: Dunod; 1973.

Greenacre, MJ. Theory and Applications of Correspondence Analysis. London: Academic Press; 1984.

Greenacre, MJ. Correspondence Analysis in Practice. 2nd ed. Boca Raton, FL: Chapman %26 Hall/CRC; 2007.

Abdi, H, Valentin, D. Multiple correspondence analysis. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage Publications; 2007, 651–657.

Hwang, H, Tomiuk, MA, Takane, Y. Correspondence analysis, multiple correspondence analysis and recent developments. In: Millsap, R, Maydeu‐Olivares, A, eds. Handbook of Quantitative Methods in Psychology. London: Sage Publications 2009, 243–263.

Abdi, H, Williams, LJ. Correspondence analysis. In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks: Sage Publications; 2010, (In press).

Brunet, E. Faut‐il pondérer les données linguistiques. CUMFID 1989, 16: 39–50.

Escofier, B, Pagès, J. Analyses factorielles simples et multiples: objectifs, méthodes, interprétation. Paris: Dunod; 1990.

Escofier, B, Pagès, J. Multiple factor analysis. Comput Stat Data Anal 1994, 18: 121–140.

Abdi, H, Valentin, D. Multiple factor analysis (mfa). In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage Publications; 2007, 657–663.

Diamantaras, KI, Kung, SY. Principal Component Neural Networks: Theory and Applications. New York: John Wiley %26 Sons; 1996.

Abdi, H, Valentin, D, Edelman, B. Neural Networks. Thousand Oaks, CA: Sage; 1999.

Nakache, JP, Lorente, P, Benzécri, JP, Chastang, JF. Aspect pronostics et thérapeutiques de l`infarctus myocardique aigu. Les Cahiers de, Analyse des Données, 1977, 2: 415–534.

Saporta, G, Niang, N. Correspondence analysis and classification. In: Greenacre, M, Blasius, J, eds. Multiple Correspondence Analysis and Related Methods. Boca Raton, FL: Chapman %26 Hall; 2006, 371–392.

Abdi, H. Discriminant correspondence analysis. In: Salkind, NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage Publications; 2007, 270–275.

Abdi, H, Williams, LJ. Barycentric discriminant analyis (BADIA). In: Salkind, NJ, ed. Encyclopedia of Research Design. Thousand Oaks, CA: Sage; 2010, (In press).

Abdi, H, Valentin, D. Mathématiques pour les sciences cognitives. Grenoble: PUG; 2006.

Strang, G. Introduction to Linear Algebra. Cambridge, MA: Wellesley‐Cambridge Press; 2003.

Harris, RJ. A Primer of Multivariate Statistics. Mahwah, NJ: Lawrence Erlbaum Associates; 2001.

Good, I. Some applications of the singular value decomposition of a matrix. Technometrics 1969, 11: 823–831.

Eckart, C, Young, G. The approximation of a matrix by another of a lower rank. Psychometrika 1936, 1: 211–218.

Abdi, H. Factor Rotations. In Lewis‐Beck, M, Bryman, A., Futimg, T., eds. Encyclopedia for Research Methods for the Social Sciences. Thousand Oaks, CA: Sage Publications; 2003, 978–982.