Box, GP, Jenkins, GM. Time Series Analysis: Forecasting and Control, revised. Oakland: Holden‐Day; 1976.
Tukey, JW. Exploratory Data Analysis. Reading: Addison‐Wesley; 1977.
Bryk, AS, Raudenbush, SW. Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park: Sage Publications; 1992.
Goldstein, H. Multilevel Statistical Models. London: Edward Arnold; 1995.
Pinheiro, JC, Bates, DM. Mixed‐Effects Models in S and S‐Plus. New York: Springer; 2000.
Carithers, RL, Franklin Herlong, H, Mae Diehl, A, Shaw, EW, Combes, B, Fallon, HJ, Maddrey, WC. Methylprednisolone therapy in patients with severe alcoholic hepatitis. Ann Int Med 1989, 110:685–690.
Vonesh, EF, Chinchilli, VM. Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York: Marcel Dekker; 1997.
Diggle, PJ, Heagerty, P, Liang, K‐Y, Zeger, SL. Analysis of Longitudinal Data. 2nd ed. Oxford: Oxford University Press; 2002.
Hilden‐Minton, JA. Multilevel Diagnostics for Mixed and Hierarchical Linear Models, PhD Thesis, University of California Los Angeles, 1995.
Loy, A, Hofmann, H. Minimally confounded residuals for mixed/hierarchical linear models, in preparation.
Buja, A, Cook, D, Hofmann, H, Lawrence, M, Lee, E‐K, Swayne, DF, Wickham, H. Statistical inference for exploratory data analysis and model diagnostics. R Soc Phil Trans A 2009, 367:4361–4383.
Fraccaro, R, Hyndman, RJ, Veevers, A. Residual diagnostic plots for checking for model mis‐specification in time series regression. Austr New Zeal J Stat 2000, 42:463–477.
Laird, NM, Ware, JH. Random‐effects models for longitudinal data. Biometrics 1982, 38:963–974.
Lange, N, Ryan, L. Assessing normality in random effects models. Ann Stat 1989, 17:624–642.
Eberly, LE, Thackeray, LM. On Lange and Ryan`s plotting technique for diagnosing non‐normality of random effects. Stat Prob Lett 2005, 75:77–85.
Haslett, J, Haslett, SJ. The three basic types of residuals for a linear model. Int Stat Rev 2007, 75:1–24.
Haslett, J, Hayes, K. Residuals for the linear model with general covariance structure. J R Stat Soc Ser B 1998, 60:201–215.
Haslett, J. A simple derivation of deletion diagnostic results for the general linear model with correlated errors. J R Stat Soc Ser B 1999, 61:603–609.
Haslett, J, Dillane, D. Application of ‘delete = replace’ to deletion diagnostics for variance component estimation in the linear mixed model. J R Stat Soc Ser B 2004, 66:131–143.
Dillane, D. Deletion Diagnostics for the Linear Mixed Model, PhD Thesis, Trinity College Dublin, September 2005.
Belsley, DA, Kuh, E, Welsch, RE. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley %26 Sons; 1980.
Dennis Cook, R, Weisberg, S. Residuals and Influence in Regression. New York: Chapman and Hall; 1982.
Chatterjee, S, Hadi, AS. Influential observations, high leverage points, and outliers in linear regression. Stat Sci 1986, 1:379–393.
Schabenberger, O. Mixed model influence diagnostics. In Proceedings of the Twenty‐Ninth Annual SAS® Users Group International Conference, Cary, NC, 2004. SAS Users Group International, SAS Institute Inc.
Rabe‐Hesketh, S, Skrondal, A. Diagnostics for generalised linear mixed models, United Kingdom Stata Users` Group Meetings 2003 05, Stata Users Group, 2003.
Rabash, J, Steele, F, Browne, WJ, Goldstein, H. A User`s Guide to MLwiN, v2.26, Centre for Multilevel Modelling, University of Bristol, 2012.
Loy, A. HLMdiag: Diagnostic tools for two‐level normal mixed/hierarchical linear models, R package version 0.1.5, 2012.
R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3‐900051‐07‐0. Available from: http://www.R‐project.org/.
West, BT, Galecki, AT. An overview of current software procedures for fitting linear mixed models. The American Statistician 2011, 65:274–282.
Demidenko, E, Stukel, TA. Influence analysis for linear mixed‐effects models. Stat Med 2005, 24:893–909.
Nobre, JS, Singer, JM. Leverage analysis for linear mixed models. J Appl Stat 2011, 38:1063–1072.
Dennis Cook, R. Detection of influential observation in linear regression. Technometrics 1977, 19:15–18.
Longford, NT. Simulation‐based diagnostics in random‐coefficient models. J R Stat Soc Ser A 2001, 164:259–273.
Christensen, R, Pearson, LM, Johnson, W. Case‐deletion diagnostics for mixed models. Technometrics 1992, 34:38–45.
Banerjee, M, Frees, E. Influence diagnostics for linear longitudinal models. J Am Stat Assoc 1997, 92:999–1005.
Zewotir, T, Galpin, JS. Influence diagnostics for linear mixed models. J Data Sci 2005, 3:153–177.
Zewotir, T. Multiple cases deletion diagnostics for linear mixed models. Commun Stat—Theory Meth 2008, 37:1071–1084.
Shi, L, Chen, G. Deletion, replacement and mean‐shift for diagnostics in linear mixed models. Computational Statistics %26 Data Analysis 2012, 56:202–208.
Beckman, RJ, Nachtsheim, CJ, Dennis Cook, R. Diagnostics for mixed‐model analysis of variance. Technometrics 1987, 29:413–426.
Lesaffre, E, Verbeke, G. Local influence in linear mixed models. Biometrics 1998, 54:570–582.
Shi, L, Miguel Ojeda, M. Local influence in multilevel regression for growth curves. J Multivariate Anal 2004, 91:282–304.
Shi, L, Chen, G. Case deletion diagnostics in multilevel models. J Multivariate Anal 2008, 99:1860–1877.
Langford, IH, Lewis, T. Outliers in multilevel data. J R Stat Soc Ser A 1998, 161:121–160.
Longford, NT. Discussion on ‘Outliers in multilevel data’ (by I.H. Langford and T. Lewis). J R Stat Soc Ser A 1998, 161:154–155.
Shi, L, Chen, G. Detection of outliers in multilevel models. J Stat Plann Infer 2008, 138:3189–3199.