International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004, 431:931–945.

Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J, Devon, K, Dewar, K, Doyle, M, FitzHugh, W, et al. Initial sequencing and analysis of the human genome. Nature 2001, 409:860–921.

Dudoit, S, Yang, Y, Callow, MJ, Speed, TP. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 2002, 12:111–139.

Lockhart, DJ, Dong, H, Byrne, MC, Follettie, MT, Gallo, MV, Chee, MS, Mittmann, M, Wang, C, Kobayashi, M, Horton, H, et al. Expression monitoring by hybridization to high‐density oligonucleotide arrays. Nat Biotechnol 1996, 14:1675–1680.

DeRisi, J, Penland, L, Brown, PO, Bittner, ML, Meltzer, PS, Ray, M, Chen, Y, Su, YA, Trent, JM. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996, 14:457–460.

Hughes, TR, Mao, M, Jones, AR, Burchard, J, Marton, MJ, Shannon, KW, Lefkowitz, SM, Ziman, M, Schelter, JM, Meyer, MR, et al. Expression profiling using microarrays fabricated by an ink‐jet oligonucleotide synthesizer. Nat Biotechnol 2001, 19:342–347.

Bullinger, L, Döhner, K, Bair, E, Fröhling, S, Schlenk, RF, Tibshirani, R, Döhner, H, Pollack, JR. Use of gene‐expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Eng J Med 2004, 350:1605–1616. doi: 10.1056/NEJMoa031046.

Baggerly, KA, Coombes, KR, Neeley, ES. Run batch effects potentially compromise the usefulness of genomic signatures for ovarian cancer. J Clin Oncol 2008, 26:1186–1187. doi: 10.1200/JCO.2007.15.1951.

Baggerly, KA, Coombes, KR. Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high‐throughput biology. Ann Appl Stat 2009, 3:1309–1334.

Tseng, GC, Oh, MK, Rohlin, L, Liao, JC, Wong, WH. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res 2001, 29:2549–2557. doi:10.1093/nar/29.12.2549.

Yang, YH, Dudoit, S, Luu, P, Lin, DM, Peng, V, Ngai, J, Speed, TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30:e15. doi:10.1093/nar/30.4.e15.

Quackenbush, J. Microarray data normalization and transformation. Nat Genet 2002, 32:496–501.

Smyth, GK, Speed, T. Normalization of cDNA microarray data. Methods 2003, 31:265–273.

Bolstad, B, Irizarry, R, Åstrand, M, Speed, T. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185–193. doi: 10.1093/bioinformatics/19.2.185.

Irizarry, RA, Warren, D, Spencer, F, Kim, IF, Biswal, S, Frank, BC, Gabrielson, E, Garcia, JG, Geoghegan, J, Germino, G, et al. Multiple‐laboratory comparison of microarray platforms. Nat Methods 2005, 2:345–350.

Brettschneider, J, Collin, F, Bolstad, BM, Speed, TP. Quality assessment for short oligonucleotide microarray data. Technometrics 2008, 50:241–264. doi:10.1198/004017008000000334 .

Stafford, P. Methods in Microarray Normalization. Drug Discovery Series. Boca Raton, FL: Chapman %26 Hall/CRC; 2008.

Leek, JT, Scharpf, RB, Bravo, HC, Simcha, D, Langmead, B, Johnson, WE, Geman, D, Baggerly, K, Irizarry, RA. Tackling the widespread and critical impact of batch effects in high‐throughput data. Nat Rev Genet 2010, 11:733–739.

Beer, DG, Kardia, SL, Huang, CC, Giordano, TJ, Levin, AM, Misek, DE, Lin, L, Chen, G, Gharib, TG, Thomas, DG, et al. Gene‐expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002, 8:816–824.

Bair, E, Tibshirani, R. Semi‐supervised methods to predict patient survival from gene expression data. PLoS Biol 2004, 2:e108. doi:10.1371/journal.pbio.0020108.

Schena, M, Shalon, D, Heller, R, Chai, A, Brown, PO, Davis, RW. Parallel human genome analysis: microarray‐based expression monitoring of 1000 genes. Proc Natl Acad Sci 1996, 93:10614–10619.

DeRisi, JL, Iyer, VR, Brown, PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278:680–686.

Rocke, DM, Durbin, B. A model for measurement error for gene expression arrays. J Comput Biol 2001, 8:557–569.

Newton, MA, Kendziorski, CM, Richmond, CS, Blattner, FR, Tsui, KW. On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 2001, 8:37–52.

Tusher, VG, Tibshirani, R, Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 2001, 98:5116–5121.

Chen, Y, Dougherty, ER, Bittner, ML. Ratio‐based decisions and the quantitative analysis of cDNA microarray images. J Biomed Opt 1997, 2:364–374. doi: 10.1117/12.281504.

Miller, RA, Galecki, A, Shmookler‐Reis, RJ. Interpretation, design, and analysis of gene array expression experiments. J Gerontol A Biol Sci Med Sci 2001, 56:B52–B57.

Budhraja, V, Spitznagel, E, Schaiff, WT, Sadovsky, Y. Incorporation of gene‐specific variability improves expression analysis using high‐density DNA microarrays. BMC Biol 2003, 1:1.

Hsiao, A, Worrall, DS, Olefsky, JM, Subramaniam, S. Variance‐modeled posterior inference of microarray data: detecting gene‐expression changes in 3 T3‐L1 adipocytes. Bioinformatics 2004, 20:3108–3127.

Allison, DB, Cui, X, Page, GP, Sabripour, M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006, 7:55–65.

Callow, MJ, Dudoit, S, Gong, EL, Speed, TP, Rubin, EM. Microarray expression profiling identifies genes with altered expression in HDL‐deficient mice. Genome Res 2000, 10:2022–2029.

Hastie, T, Tibshirani, R, Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. 2 ed. New York: Springer; 2009.

Hastie, T, Tibshirani, R. Generalized Aditive Models. Monographs on Statistics and Applied Probability Series. Boca Raton, FL: Chapman %26 Hall/CRC; 1990.

Tanaka, TS, Jaradat, SA, Lim, MK, Kargul, GJ, Wang, X, Grahovac, MJ, Pantano, S, Sano, Y, Piao, Y, Nagaraja, R, et al. Genome‐wide expression profiling of mid‐gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci 2000, 97:9127–9132.

Arfin, SM, Long, AD, Ito, ET, Tolleri, L, Riehle, MM, Paegle, ES, Hatfield, GW. Global gene expression profiling in *Escherichia coli* K12. The effects of integration host factor. J Biol Chem 2000, 275:29672–29684.

Kerr, MK, Martin, M, Churchill, GA. Analysis of variance for gene expression microarray data. J Comput Biol 2000, 7:819–837.

Huber, W, von Heydebreck, A, Sültmann, H, Poustka, A, Vingron, M, Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics 2002, 18(suppl 1):S96–S104. doi:10.1093/bioinformatics/18.suppl_1.S96.

Cui, X, Hwang, JTG, Qiu, J, Blades, NJ, Churchill, GA. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 2005, 6:59–75. doi:10.1093/biostatistics/kxh018.

Stein, CM. Confidence sets for the mean of a multivariate normal distribution. J R Stat Soc B 1962, 24:265–296.

Baldi, P, Long, AD. A Bayesian framework for the analysis of microarray expression data: regularized t‐test and statistical inferences of gene changes. Bioinformatics 2001, 17:509–519. doi:10.1093/bioinformatics/17.6.509.

Goldstein, M. Bayesian analysis of regression problems. Biometrika 1976, 63:51–58. doi:10.1093/biomet/63.1.51.

Lönnstedt, I, Speed, T. Replicated microarray data. Stat Sin 2002, 12:31–46.

Kendziorski, CM, Newton, MA, Lan, H, Gould, MN. On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med 2003, 22:3899–3914. doi: 10.1002/sim.1548.

Wright, GW, Simon, RM. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 2003, 19:2448–2455. doi: 10.1093/bioinformatics/btg345.

Smyth, GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3. doi: 10.2202/1544‐6115.1027.

Newton, MA, Noueiry, A, Sarkar, D, Ahlquist, P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 2004, 5:155–176. doi:10.1093/biostatistics/5.2.155.

Jeffery, I, Higgins, D, Culhane, A. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 2006, 7:359. doi:10.1186/1471‐2105‐7‐359.

Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25–29.

Dahlquist, KD, Salomonis, N, Vranizan, K, Lawlor, SC, Conklin, BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 2002, 31:19–20.

Doniger, SW, Salomonis, N, Dahlquist, KD, Vranizan, K, Lawlor, SC, Conklin, BR. MAPPFinder: using gene ontology and GenMAPP to create a global gene‐expression profile from microarray data. Genome Biol 2003, 4:R7.

Zeeberg, BR, Feng, W, Wang, G, Wang, MD, Fojo, AT, Sunshine, M, Narasimhan, S, Kane, DW, Reinhold, WC, Lababidi, S, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 2003, 4:R28.

Draghici, S, Khatri, P, Bhavsar, P, Shah, A, Krawetz, SA, Tainsky, MA. Onto‐tools, the toolkit of the modern biologist: onto‐express, onto‐compare, onto‐design and onto‐translate. Nucleic Acids Res 2003, 31:3775–3781.

Zhong, S, Li, C, Wong, WH. ChipInfo: software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res 2003, 31:3483–3486.

Berriz, GF, King, OD, Bryant, B, Sander, C, Roth, FP. Characterizing gene sets with FuncAssociate. Bioinformatics 2003, 19:2502–2504.

Blalock, EM, Chen, KC, Sharrow, K, Herman, JP, Porter, NM, Foster, TC, Landfield, PW. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003, 23:3807–3819.

Pavlidis, P, Qin, J, Arango, V, Mann, JJ, Sibille, E. Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex. Neurochem Res 2004, 29:1213–1222.

Tian, L, Greenberg, SA, Kong, SW, Altschuler, J, Kohane, IS, Park, PJ. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 2005, 102:13544–13549.

Mootha, VK, Lindgren, CM, Eriksson, KF, Subramanian, A, Sihag, S, Lehar, J, Puigserver, P, Carlsson, E, Ridderstrale, M, Laurila, E, et al. PGC‐1α‐responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34:267–273.

Breitling, R, Amtmann, A, Herzyk, P. Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 2004, 5:34.

Rahnenfuhrer, J, Domingues, FS, Maydt, J, Lengauer, T. Calculating the statistical significance of changes in pathway activity from gene expression data. Stat Appl Genet Mol Biol 2004, 3:Article16.

Barry, WT, Nobel, AB, Wright, FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 2005, 21:1943–1949.

Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, Paulovich, A, Pomeroy, SL, Golub, TR, Lander, ES, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci U S A 2005, 102:15545–15550.

Zahn, JM, Sonu, R, Vogel, H, Crane, E, Mazan‐Mamczarz, K, Rabkin, R, Davis, RW, Becker, KG, Owen, AB, Kim, SK. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2006, 2:e115.

Newton, MA, Quintana, FA, Boon, JA, Sengupta, S, Ahlquist, P. Random‐set methods identify distinct aspects of the enrichment signal in gene‐set analysis. Ann Appl Stat 2007, 1:85–106.

Efron, B, Tibshirani, R. On testing the significance of sets of genes. Ann Appl Stat 2007, 1:107–129.

Damian, D, Gorfine, M. Statistical concerns about the GSEA procedure. Nat Genet 2004, 36:663.

Storey, JD. The optimal discovery procedure: a new approach to simultaneous significance testing. J R Stat Soc B 2007, 69:347–368. doi: 10.1111/j.1467‐9868.2007.005592.x.

Storey, JD, Dai, JY, Leek, JT. The optimal discovery procedure for large‐scale significance testing, with applications to comparative microarray experiments. Biostatistics 2007, 8:414–432.

Neyman, J, Pearson, ES. On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc Lond A 1933, 231:289–337. doi:10.1098/rsta.1933.0009.

Leek, JT, Monsen, E, Dabney, AR, Storey, JD. EDGE: extraction and analysis of differential gene expression. Bioinformatics 2006, 22:507–508.

Witten, DM, Tibshirani, R. Testing significance of features by lassoed principal components. Ann Appl Stat 2008, 2:986–1012.

Alter, O, Brown, PO, Botstein, D. Singular value decomposition for genome‐wide expression data processing and modeling. Proc Natl Acad Sci U S A 2000, 97:10101–10106.

Xing, EP, Karp, RM. CLIFF: clustering of high‐dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 2001, 17:S306–S315. doi: 10.1093/bioinformatics/17.suppl_1.S306.

Wang, J, Bo, T, Jonassen, I, Myklebost, O, Hovig, E. Tumor classification and marker gene prediction by feature selection and fuzzy c‐means clustering using microarray data. BMC Bioinformatics 2003, 4:60. doi:10.1186/1471‐2105‐4‐60.

Tadesse, MG, Sha, N, Vannucci, M. Bayesian variable selection in clustering high‐dimensional data. J Am Stat Assoc 2005, 100:602–617. doi:10.1198/016214504000001565.

Raftery, AE, Dean, N. Variable selection for model‐based clustering. J Am Stat Assoc 2006, 101:168–178. doi: 10.1198/016214506000000113.

Kim, S, Tadesse, MG, Vannucci, M. Variable selection in clustering via Dirichlet process mixture models. Biometrika 2006, 93:877–893. doi:10.1093/biomet/93.4.877.

Pan, W, Shen, X, Jiang, A, Hebbel, RP. Semi‐supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 2006, 22:2388–2395. doi:10.1093/bioinformatics/btl393.

Pan, W, Shen, X. Penalized model‐based clustering with application to variable selection. J Mach Learn Res 2007, 8:1145–1164.

Bondell, HD, Reich, BJ. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 2008, 64:115–123. doi:10.1111/j.1541‐0420.2007.00843.x.

Swartz, MD, Mo, Q, Murphy, ME, Lupton, JR, Turner, ND, Hong, M, Vannucci, M. Bayesian variable selection in clustering high‐dimensional data with substructure. J Agric Biol Environ Stat 2008. 13:407–423. doi:10.1198/108571108X378317.

Wang, S, Zhu, J. Variable selection for model‐based high‐dimensional clustering and its application to microarray data. Biometrics 2008, 64:440–448. doi:10.1111/j.1541‐0420.2007.00922.x.

Maugis, C, Celeux, G, Martin‐Magniette, ML. Variable selection for clustering with Gaussian mixture models. Biometrics 2009, 65:701–709. doi:10.1111/j.1541‐0420.2008.01160.x.

Koestler, DC, Marsit, CJ, Christensen, BC, Karagas, MR, Bueno, R, Sugarbaker, DJ, Kelsey, KT, Houseman, EA. Semi‐supervised recursively partitioned mixture models for identifying cancer subtypes. Bioinformatics 2010, 26:2578–2585. doi:10.1093/bioinformatics/btq470.

Witten, DM, Tibshirani, R. A framework for feature selection in clustering. J Am Stat Assoc 2010, 105:713–726. doi:10.1198/jasa.2010.tm09415.

Tibshirani, R, Hastie, T, Narasimhan, B, Chu, G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci 2002, 99:6567–6572. doi:10.1073/pnas.082099299.

Sha, N, Vannucci, M, Tadesse, MG, Brown, PJ, Dragoni, I, Davies, N, Roberts, TC, Contestabile, A, Salmon, M, Buckley, C, et al. Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 2004, 60:812–819. doi:10.1111/j.0006‐341X.2004.00233.x.

Bair, E, Hastie, T, Paul, D, Tibshirani, R. Prediction by supervised principal components. J Am Stat Assoc 2006, 101:119–137. doi:10.1198/016214505000000628.

Wu, B. Differential gene expression detection and sample classification using penalized linear regression models. Bioinformatics 2006, 22:472–476. doi:10.1093/bioinformatics/bti827.

Tai, F, Pan, W. Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data. Bioinformatics 2007, 23:3170–3177. doi:10.1093/bioinformatics/btm488.

Wang, S, Zhu, J. Improved centroids estimation for the nearest shrunken centroid classifier. Bioinformatics 2007, 23:972–979. doi:10.1093/bioinformatics/btm046.

Guo, Y, Hastie, T, Tibshirani, R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2007, 8:86–100. doi:10.1093/biostatistics/kxj035.

Paul, D, Bair, E, Hastie, T, Tibshirani, R. “Preconditioning” for feature selection and regression in high‐dimensional problems. Ann Stat 2008, 36:1595–1618.

Guo, J. Simultaneous variable selection and class fusion for high‐dimensional linear discriminant analysis. Biostatistics 2010, 11:599–608. doi:10.1093/biostatistics/kxq023.

Stingo, FC, Vannucci, M. Variable selection for discriminant analysis with markov random field priors for the analysis of microarray data. Bioinformatics 2011, 27:495–501. doi:10.1093/bioinformatics/btq690.

Murie, C, Woody, O, Lee, A, Nadon, R. Comparison of small n statistical tests of differential expression applied to microarrays. BMC Bioinformatics 2009, 10:45. doi:10.1186/1471‐2105‐10‐45.

Wu, H, Kerr, M, Cui, X, Churchill, G. MAANOVA: A software package for the analysis of spotted cDNA microarray experiments. In: Parmigiani, G, Garrett, E, Irizarry, R, Zeger, S, eds. The Analysis of Gene Expression Data. Statistics for Biology and Health. London: Springer; 2003, 313–341.

Benjamini, Y, Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 1995, 57:289–300.

Benjamini, Y, Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001, 29:1165–1188.

Storey, JD, Taylor, JE, Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc B 2004, 66:187–205. doi:10.1111/j.1467‐9868.2004.00439.x.

Farcomeni, A. More powerful control of the false discovery rate under dependence. Stat Methods Appl 2006, 15:43–73.

Meinshausen, N. False discovery control for multiple tests of association under general dependence. Scand J Stat 2006, 33:227–237. doi:10.1111/j.1467‐9469.2005.00488.x.

Pawitan, Y, Calza, S, Ploner, A. Estimation of false discovery proportion under general dependence. Bioinformatics 2006, 22:3025–3031. doi:10.1093/bioinformatics/btl527.

Efron, B. Correlation and large‐scale simultaneous significance testing. J Am Stat Assoc 2007, 102: 93–103.

Finner, H, Dickhaus, T, Roters, M. Dependency and false discovery rate: Asymptotics. Ann Stat 2007, 35:1432–1455.

Leek, JT, Storey, JD. A general framework for multiple testing dependence. Proc Natl Acad Sci 2008, 105:18718–18723. doi:10.1073/pnas.0808709105.

Romano, JP, Shaikh, AM, Wolf, M. Control of the false discovery rate under dependence using the bootstrap and subsampling. Test 2008, 17:417–442.

Sun, W, Tony Cai, T. Large‐scale multiple testing under dependence. J R Stat Soc B 2009, 71:393–424. doi:10.1111/j.1467‐9868.2008.00694.x.

Clarke, S, Hall, P. Robustness of multiple testing procedures against dependence. Ann Stat 2009, 37:332–358.

Friguet, C, Kloareg, M, Causeur, D. A factor model approach to multiple testing under dependence. J Am Stat Assoc 2009, 104:1406–1415.

Fan, J, Han, X, Gu, W. Estimating false discovery proportion under arbitrary covariance dependence. J Am Stat Assoc 2012, 107:1019–1035. doi:10.1080/01621459.2012.720478.

Storey, JD. A direct approach to false discovery rates. J R Stat Soc B 2002, 64:479–498. doi:10.1111/1467‐9868.00346.

Storey, JD. The positive false discovery rate: a Bayesian interpretation and the q‐value. Ann Stat 2003, 31:2013–2035.

Efron, B, Tibshirani, R. Empirical Bayes methods and false discovery rates for microarrays. Genet Epidemiol 2002, 23:70–86. doi:10.1002/gepi.1124.

Efron, B, Tibshirani, R, Storey, JD, Tusher, V. Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 2001, 96:1151–1160. doi:10.1198/016214501753382129.

Allison, DB, Gadbury, GL, Heo, M, Fernández, JR, Lee, CK, Prolla, TA Weindruch, R A mixture model approach for the analysis of microarray gene expression data, Comput Stat Data Anal 2002, 39:1—20. doi:10.1016/S0167‐9473(01)00046‐9.

Pounds, S, Morris, SW. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p‐values. Bioinformatics 2003, 19:1236–1242. doi:10.1093/bioinformatics/btg148.

Do, KA, Müller, P, Tang, F. A Bayesian mixture model for differential gene expression. J R Stat Soc C 2005, 54:627–644. doi:10.1111/j.1467‐9876.2005.05593.x.

Efron, B. Microarrays, empirical Bayes and the two‐groups model. Stat Sci 2008, 23:1–22.

Datta, S, Datta, S. Empirical Bayes screening of many p‐values with applications to microarray studies. Bioinformatics 2005, 21:1987–1994. doi:10.1093/bioinformatics/bti301.

Dai, H, Charnigo, R. Omnibus testing and gene filtration in microarray data analysis. J Appl Stat 2008, 35:31–47. doi:10.1080/02664760701683528.

Dai, H, Charnigo, R. Contaminated normal modeling with application to microarray data analysis. Can J Stat 2010, 38:315–332. doi:10.1002/cjs.10053.

Shendure, J. The beginning of the end for microarrays? Nat Methods 2008, 5:585–587.

Taniguchi, M, Miura, K, Iwao, H, Yamanaka, S. Quantitative assessment of DNA microarrays—comparison with Northern blot analyses. Genomics 2001, 71:34–39.

Wang, L, Feng, Z, Wang, X, Wang, X, Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA‐seq data. Bioinformatics 2010, 26:136–138.

Robinson, MD, Oshlack, A. A scaling normalization method for differential expression analysis of RNA‐seq data. Genome Biol 2010, 11:R25.

Hardcastle, TJ, Kelly, KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2010, 11:422.

Anders, S, Huber, W. Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.

Bullard, JH, Purdom, E, Hansen, KD, Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA‐Seq experiments. BMC Bioinformatics 2010, 11:94.

Li, J, Tibshirani, R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA‐Seq data. Stat Methods Med Res 2011.

Łabaj, PP, Leparc, GG, Linggi, BE, Markillie, LM, Wiley, HS, Kreil, DP. Characterization and improvement of RNA‐Seq precision in quantitative transcript expression profiling. Bioinformatics 2011, 27:i383–i391.

Medina, I, Montaner, D, Bonifaci, N, Pujana, MA, Carbonell, J, Tarraga, J, Al‐Shahrour, F, Dopazo, J. Gene set‐based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome‐wide association studies. Nucleic Acids Res 2009, 37:W340–W344.

Zhang, K, Cui, S, Chang, S, Zhang, L, Wang, J. i‐GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome‐wide association study. Nucleic Acids Res 2010, 38:W90–W95.

Nam, D, Kim, J, Kim, SY, Kim, S. GSA‐SNP: a general approach for gene set analysis of polymorphisms. Nucleic Acids Res 2010, 38:W749–W754.

Cui, X, Churchill, G. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 2003, 4:210. doi:10.1186/gb‐2003‐4‐4‐210.

Causton, HC, Quackenbush, J, Brazma, A. Microarray Gene Expression Data Analysis: A Beginner`s Guide. Malden, MA: Blackwell Publishing; 2003.

Parmigiani, G, Garett, ES, Irizarry, RA, Zeger, SL. The Analysis of Gene Expression Data: Methods and Software. New York: Springer; 2003.

Speed, T. Statistical Analysis of Gene Expression Microarray Data. Interdisciplinary Statistics. Boca Raton, FL: Chapman %26 Hall/CRC; 2003.

Wit, E, McClure, J. Statistics for Microarrays: Design, Analysis and Inference. Chichester: John Wiley %26 Sons; 2004.

McLachlan, G, Do, K, Ambroise, C. Analyzing Microarray Gene Expression Data. Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley %26 Sons; 2005.

Do, K, Müller, P, Vannucci, M. Bayesian Inference for Gene Expression and Proteomics. New York: Cambridge University Press; 2006.

Draghici, S. Statistics and Data Analysis for Microarrays Using R and Bioconductor. Mathematical and Computational Biology Series. 2nd ed. Boca Raton, FL: Chapman %26 Hall/CRC; 2011.