Tibshirani, R. Regression shrinkage and selection via the lasso. J R Stat Soc [Ser B] 1996, 58:267–288.
Hastie, T, Tibshirani, R, Friedman, J, Franklin, J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005, 27:83–85.
Akaike, H. A new look at the statistical model identification. IEEE Trans Automat Control 1974, 19:716–723.
Schwarz, G. Estimating the dimension of a model. Ann Stat 1978, 6:461–464.
Stone, M. Cross‐validatory choice and assessment of statistical predictions. J R Stat Soc [Ser B] 1974, 36:111–147.
Breiman, L. Heuristics of instability and stabilization in model selection. Ann Stat 1996, 24:2350–2383.
Khan, JA, Van Aelst, S, Zamar, RH. Robust linear model selection based on least angle regression. J Am Stat Assoc 2007, 102:1289–1299.
Efron, B, Hastie, T, Johnstone, L, Tibshirani, R. Least angle regression. Ann Stat 2004, 32:407–499.
Ishwaran, H. Discussion‐least angle regression. Ann Stat 2004, 32:452–457.
Massart, P, Loubes, J‐M. Discussion‐least angle regression. Ann Stat 2004, 32:476–482.
Madigan, D, Ridgeway, G. Discussion‐least angle regression. Ann Stat 2004, 32:465–469.
Stine, RA. Discussion‐least angle regression. Ann Stat 2004, 32:475–480.
Hoerl, AE, Kennard, RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55–67.
Yuan, M, Lin, Y. Model selection and estimation in regression with grouped variables. J R Stat Soc [Ser B] 2006, 68:49–67.
Lin, Y, Zhang, HH. Component selection and smoothing in smoothing spline analysis of variance models. Ann Stat 2006, 34:2272–2297.
Park, MY, Hastie, T. Regularization path algorithms for detecting gene interactions. Department of Statistics, Stanford University, 2006.
Nelder, JA. A reformulation of linear models. J R Stat Soc [Ser A] 1977, 140:48–77.
McCullagh, P, Nelder, JA. Generalized linear models (monographs on statistics and applied probability 37). London: Chapman Hall; 1989.
Turlach, B. Discussion‐least angle regression. Ann Stat 2004, 32:481–490.
Yuan, M, Joseph, VR, Lin, Y. An efficient variable selection approach for analyzing designed experiments. Technometrics 2007, 49:430–439.
Choi, NH, Li, W, Zhu, J. Variable selection with the strong heredity constraint and its oracle property. J Am Stat Assoc 2010, 105:354–364.
Zhao, P, Rocha, G, Yu, B. The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat 2009, 37:3468–3497.
Simila, T, Tikka, J. Common subset selection of inputs in multiresponse regression. In: Neural Networks, 2006. IJCNN`06. International Joint Conference on, IEEE, 2006, 1908–1915.
Meier, L, Bühlmann, P. Smoothing L1‐penalized estimators for high‐dimensional time‐course data. Electron J Stat 2007, 1:597–615.
Turlach, BA, Venables, WN, Wright, SJ. Simultaneous variable selection. Technometrics 2005, 47:349–363.
Silva, J, Marques, J, Lemos, J. Selecting landmark points for sparse manifold learning. In: Advances in Neural Information Processing Systems, 2005, 1241–1248.
Hirose, Y, Komaki, F. An extension of least angle regression based on the information geometry of dually flat spaces. J Comput Graph Stat 2010, 19:1007–1023.
Augugliaro, L, Mineo, AM, Wit, EC. Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models. J R Stat Soc [Ser B] 2013, 75:471–498.
Park, MY, Hastie, T. L1‐regularization path algorithm for generalized linear models. J R Stat Soc [Ser B] 2007, 69:659–677.
Wu, TT, Lange, K. Coordinate descent algorithms for lasso penalized regression. Ann Stat 2008, 2:224–244.
Friedman, J, Hastie, T, Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010, 33:1.
Goeman, JJ. L1 penalized estimation in the cox proportional hazards model. Biom J 2010, 52:70–84.
Meier, L, Van de Geer, S, Bühlmann, P. High‐dimensional additive modeling. Ann Stat 2009, 37:3779–3821.
Zhang, H. Linear model selection based on extended robust least angle regression. Master`s thesis, The University of British Columbia, Canada, 2012.
Zou, H, Hastie, T. Regularization and variable selection via the elastic net. J R Stat Soc [Ser B] 2005, 67:301–320.
Frank, LE, Friedman, JH. A statistical view of some chemometrics regression tools. Technometrics 1993, 35:109–135.
Fan, J, Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001, 96:1348–1360.
Zou, H, Hastie, T, Tibshirani, R. Sparse principal component analysis. J Comput Graph Stat 2006, 15:265–286.
Zass, R, Shashua, A. Nonnegative sparse PCA. In: Advances in Neural Information Processing Systems, 2006, 1561–1568.
Witten, DM, Tibshirani, R, Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2009, 10:515–534.
Clemmensen, L, Hastie, T, Witten, D, Ersbøll, B. Sparse discriminant analysis. Technometrics 2011, 53:406–413.
Shao, J, Wang, Y, Deng, X, Wang, S. Sparse linear discriminant analysis by thresholding for high dimensional data. Ann Stat 2011, 39:1241–1265.
Mai, Q, Zou, H, Yuan, M. A direct approach to sparse discriminant analysis in ultra‐high dimensions. Biometrika 2012, 99:29–42.
Meinshausen, N, Bühlmann, P. High‐dimensional graphs and variable selection with the lasso. Ann Stat 2006, 34:1436–1462.
Yuan, M. Efficient computation of l1 regularized estimates in Gaussian graphical models. J Comput Graph Stat 2008, 17:809–826.
Banerjee, O, El Ghaoui, L, d`Aspremont, A. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J Mach Learn Res 2008, 9:485–516.
Dahl, J, Vandenberghe, L, Roychowdhury, V. Covariance selection for nonchordal graphs via chordal embedding. Optim Method Softw 2008, 23:501–520.
Yuan, M, Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007, 94:19–35.
Friedman, J, Hastie, T, Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9:432–441.
Honorio, J, Samaras, D, Rish, I, Cecchi, GA. Variable selection for Gaussian graphical models. In: International Conference on Artificial Intelligence and Statistics, 2012, 538–546.
Hastie, T, Efron, B. lars: Least Angle Regression, Lasso and Forward Stagewise, R package version 1.2. 2013. Available at: http://CRAN.R‐project.org/package=lars. (Accessed December 23, 2013).
Zou, H, Hastie, T. elasticnet: Elastic‐Net for Sparse Estimation and Sparse PCA, R package version 1.1. 2012. Available at: http://CRAN.R‐project.org/package=elasticnet. (Accessed December 23, 2013).
Alfons, A. robustHD: Robust methods for high‐dimensional data, R package version 0.3.2. 2013. Available at: http://CRAN.R‐project.org/package=robustHD. (Accessed December 23, 2013).
Meier, L. grplasso: Fitting user specified models with Group Lasso penalty, R package version 0.4‐3. 2013. Available at: http://CRAN.R‐project.org/package=grplasso. (Accessed December 23, 2013).
Park, MY, Hastie, T. glmpath: L1 regularization path for generalized linear models and Cox proportional hazards model, R package version 0.97. 2013. Available at: http://CRAN.R‐project.org/package=glmpath. (Accessed December 23, 2013).
Friedman, J, Hastie, T, Tibshirani, R. glasso: Graphical lasso‐ estimation of Gaussian graphical models, R package version 1.7. 2011. Available at: http://CRAN.R‐project.org/package=glasso. (Accessed December 23, 2013).