Borges, N, Coppersmith, GA, Meyer, GG, Priebe, CE. Anomaly detection for random graphs using distributions of vertex invariants. In Information Sciences and Systems (CISS), 2011 45th Annual Conference on IEEE, 2011, 1–6.

Pao, H, Coppersmith, GA, Priebe, CE. Statistical inference on random graphs: comparative power analyses via Monte Carlo. J Comput Graph Stat 2010, 20:395–416.

Priebe, C, Conroy, J, Marchette, D, Park, Y. Scan statistics on Enron graphs. Comput Math Organ Theory 2005, 11:229–247.

Eldardiry, H, Neville, J. An analysis of how ensembles of collective classifiers improve predictions in graphs. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, ACM, 2012, 225–234.

Marchette, DJ, Priebe, CE. Predicting unobserved links in incompletely observed networks. Comput Stat Data Anal 2008, 52:1373–1386.

Bethard, S, Jurafsky, D. Who should I cite: learning literature search models from citation behavior. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM `10, New York, NY, USA. ACM, 2010, 609–618.

Airoldi, EM, Blei, DM, Fienberg, SE, Xing, EP, Jaakkola, T. Mixed membership stochastic block models for relational data with application to protein‐protein interactions. In Proceedings of the International Biometrics Society Annual Meeting, 2006.

Vogelstein, J, Gray, W, Vogelstein, R, Priebe, C. Graph classification using signal subgraphs: Applications in statistical connectomics. Trans Pattern Anal Mach Intell 2013, 35:1539–1551.

Resnick, P, Varian, HR. Recommender systems. Commun Assoc Comput Mach 1997, 40:56–58.

Bell, RM, Koren, Y, Volinsky, C. The BellKor solution to the Netflix Prize. 2008. Available at: www.netflixprize.com. (Accessed August 27, 2011).

Pazzani, M, Billsus, D. Content‐based recommendation systems. In: Brusilovsky, P, Kobsa, A, Nejdl, W, eds. The Adaptive Web, *Volume 4321 of* Lecture Notes in Computer Science. Berlin: Springer; 2007, 325–341.

Priebe, CE, Sussman, DL, Tang, M, Vogelstein, JT. Statistical inference on errorfully observed graphs. *arXiv preprint arXiv:1211.3601*. In press.

Huang,, Z., Li,, X., and Chen,, H.. Link prediction approach to collaborative filtering. In Proceedings of the 5th ACM/IEEE‐CS Joint Conference on Digital Libraries, JCDL `05, New York, NY, USA. Association for Computing Machinery, 2005, 141–142.

Pavlov, DY, Pennock, DM. A maximum entropy approach to collaborative filtering in dynamic, sparse, high‐dimensional domains. Adv Neural Inf Process Syst 2002, 15:1441–1448.

Coppersmith, GA, Priebe, CE. Vertex nomination via content and context. *arXiv preprint arXiv:1201.4118*, 2012.

Qi, G‐J, Aggarwal, C, Tian, Q, Ji, H, Huang, TS. Exploring context and content links in social media: a latent space method. IEEE Trans Pattern Anal Mach Intell 2012, 34:850–862.

Brinda, WD, Jain, S, Trosset, M.. Inference on random graphs with classified edge attributes. Technical Report 11‐03, Department of Statistics, Indiana University, 2011.

Grothendieck, J, Priebe, CE, Gorin, AL. Statistical inference on attributed random graphs: fusion of graph features and content. Comput Stat Data Anal 2010, 54:1777–1790.

Li, J, Zaïane, O. Combining usage, content, and structure data to improve web site recommendation. In: Bauknecht, K, Bichler, M, Pröll, B, eds. E‐Commerce and Web Technologies, *Volume 3182 of* Lecture Notes in Computer Science. Berlin: Springer; 2004, 313–315.

Berry, MW, Browne, M, Signer, B. 2001 Topic annotated Enron email data set, 2007.

West, DB. Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall; 2001.

Bollobás, B. Random Graphs. Cambridge, England: Cambridge University Press; 2001.

Manning, CD, Raghavan, P, Schütze, H. Introduction to Information Retrieval, vol. 1. Cambridge: Cambridge University Press; 2008.

Marchette, D, Priebe, C, and Coppersmith, G. Vertex nomination via attributed random dot product graphs. In Proceedings of the 57th International Statistical Institute World Statistics Congress, vol. 6, 2011, 16.

Salter‐Townshend, M, White, A, Gollini, I, Murphy, TB. Review of statistical network analysis: models, algorithms, and software. Stat Anal Data Mining 2012, 5:243–264.

Nowicki, K, Snijders, TAB. Estimation and prediction for stochastic blockstructures. J Am Stat Assoc 2001, 96:1077–1087.

Fienberg, SE, Wasserman, SS. Categorical data analysis of single sociometric relations. Sociol Methodol 1981, 12:156–192.

Erdös, P, Rényi, A. On random graphs. Publ Math Debrecen 1959, 6:290–297.

Hoff, PD, Raftery, AE, Handcock, MS. Latent space approaches to social network analysis. J Am Stat Assoc 2002, 97:1090–1098.

Salter‐Townshend, M, Murphy, TB. Variational Bayesian inference for the latent position cluster model for network data. Comput Stat Data Anal 2013, 57:661–671.

Vu, DQ, Hunter, DR, Schweinberger, M. Model‐based clustering of large networks. *arXiv preprint arXiv:1207.0188*, 2012.

Fortunato, S. Community detection in graphs. Phys Rep 2010, 486:75–174.

Gopalan, P, Mimno, D, Gerrish, S, Freedman, M, Blei, D. Scalable inference of overlapping communities. Adv Neural Inf Process Syst 2012, 25:2258–2266.

Airoldi, EM, Blei, DM, Fienberg, SE, Xing, EP. Mixed membership stochastic blockmodels. J Mach Learn Res 2008, 9:1981–2014.

Blondel, VD, Guillaume, J‐L, Lambiotte, R, Lefebvre, E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008, 2008:P10008.

Newman, ME, Park, J. Why social networks are different from other types of networks. Phys Rev E 2003, 68:036122.

Handcock, MS, Raftery, AE, Tantrum, JM. Model‐based clustering for social networks. J R Stat Soc A Stat Soc 2007, 170:301–354.

Krivitsky, PN, Handcock, MS, Raftery, AE, Hoff, PD. Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Soc Netw 2009, 31:204–213.

Scheinerman, E, Tucker, K. Modeling graphs using dot product representations. Comput Stat 2010, 25:1–16.

Young, SJ, Scheinerman, ER. Random dot product graph models for social networks. In: Algorithms and Models for the Web‐Graph. Berlin: Springer; 2007, 138–149.

Sussman, D, Tang, M, Priebe, C. Consistent latent position estimation and vertex classification for random dot product graphs. Trans Pattern Anal Mach Intell (Epub ahead of print; July 23, 2013).

Tang, M, Sussman, DL, Priebe, CE. Universally consistent vertex classification for latent positions graphs. Ann Stat 2013, 41:1406–1430.

Sun, M, Tang, M, Priebe, CE. A comparison of graph embedding methods for vertex nomination. In Machine Learning and Applications (ICMLA), 2012 11th International Conference on IEEE, vol. 1, 2012, 398–403.

Raftery, AE, Niu, X, Hoff, PD, Yeung, KY. Fast inference for the latent space network model using a case–control approximate likelihood. J Comput Graph Stat 2012, 21:901–919.

Wallach, HM. Topic modeling: beyond bag‐of‐words. In Proceedings of the 23rd international conference on Machine Learning, ACM, 2006, 977–984.

Blei, DM, Ng, AY, Jordan, MI. Latent Dirichlet allocation. J Mach Learn Res 2003, 3:993–1022.

McCallum, AK. Mallet: A machine learning for language toolkit. 2002. Available at: http://mallet.cs.umass.edu. (Accessed November 20, 2011).

Geman, S, Bienenstock, E, Doursat, R. Neural networks and the bias/variance dilemma. Neural Comput 1992, 4:1–58.

Snijders, TA, Nowicki, K. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J Classif 1997, 14:75–100.

Lee, DS, Priebe, CE. Bayesian vertex nomination. *arXiv preprint arXiv:1205.5082*, 2012.

Gollini, I, Murphy, TB. Joint modelling of multiple network views. *arXiv preprint arXiv:1301.3759*, 2013.

Mimno, D, Wallach, HM, Talley, E, Leenders, M, McCallum, A. Optimizing semantic coherence in topic models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2011, 262–272.