Lehmann, EL, Casella, G. Theory of Point Estimation. 2nd ed. New York: Springer; 1998.
Kosmidis, I, Firth, D. Multinomial logit bias reduction via the poisson log‐linear model. Biometrika 2011, 98:755–759.
Grün, B, Kosmidis, I, Zeileis, A. Extended β regression in R: Shaken, stirred, mixed, and partitioned. J Statist Softw 2012, 48:1–25.
Prater, NH. Estimate gasoline yields from crudes. Petroleum Refiner 1956, 35:236–238.
Cox, DR, Hinkley, DV. Theoretical Statistics. London: Chapman %26 Hall Ltd.; 1974.
McCullagh, P. Tensor Methods in Statistics. London: Chapman and Hall; 1987.
Quenouille, MH. Notes on bias in estimation. Biometrika 1956, 43:353–360.
Chernick, MR. The jackknife: a resampling method with connections to the bootstrap. Wiley Interdiscip Rev Comput Stat 2012, 4:224–226.
Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia, PA: SIAM [Society for Industrial and Applied Mathematics]; 1982.
Schucany, WR, Gray, HL, Owen, DB. On bias reduction in estimation. J Am Stat Assoc 1971, 66:524–533.
Hesterberg, T. Bootstrap. Wiley Interdiscip Rev Comput Stat 2011, 3:497–526.
Efron, B, Tibshirani, R. An Introduction to the Bootstrap. New York: Chapman %26 Hall Ltd; 1993.
Davison, AC, Hinkley, DV. Bootstrap Methods and Their Application. Cambridge: Cambridge University Press; 1997.
Hall, P, Martin, MA. Exact convergence rate of bootstrap quantile variance estimator. Probab Theory Rel Fields 1988, 80:261–268.
Cox, DR, Snell, EJ. A general definition of residuals (with discussion). J Roy Statist Soc Ser B Methodol 1968, 30:248–275.
Efron, B. Defining the curvature of a statistical problem (with applications to second order efficiency) (with discussion). Ann Stat 1975, 3:1189–1217.
Pace, L, Salvan, A. Principles of Statistical Inference: From a Neo‐Fisherian Perspective. London: World Scientific; 1997.
Cook, RD, Tsai, C‐L, Wei, BC. Bias in nonlinear regression. Biometrika 1986, 73:615–623.
Cordeiro, GM, McCullagh, P. Bias correction in generalized linear models. J Roy Statist Soc Ser B Methodol 1991, 53:629–643.
Botter, DA, Cordeiro, G. Improved estimators for generalized linear models with dispersion covariates. J Stat Comput Simul 1998, 62:91–104.
Cordeiro, G, Toyama Udo, M. Bias correction in generalized nonlinear models with dispersion covariates. Commun Stat Theory Methods 2008, 37:2219–225.
Kosmidis, I, Firth, D. A generic algorithm for reducing bias in parametric estimation. Electron J Stat 2010, 4:1097–1112.
Breslow, NE, Lin, X. Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika 1995, 82:81–91.
Cordeiro, G, Barroso, L. A third‐order bias corrected estimate in generalized linear models. Test 2007, 16:76–89.
Albert, A, Anderson, J. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 1984, 71:1–10.
Mehrabi, Y, Matthews, JNS. Likelihood‐based methods for bias reduction in limiting dilution assays. Biometrics 1995, 51:1543–1549.
Heinze, G, Schemper, M. A solution to the problem of separation in logistic regression. Stat Med 2002, 21:2409–2419.
Bull, SB, Mak, C, Greenwood, C. A modified score function estimator for multinomial logistic regression in small samples. Comput Stat Data Anal 2002, 39:57–74.
Kosmidis, I, Firth, D. Bias reduction in exponential family nonlinear models. Biometrika 2009, 96:793–804.
Kosmidis, I. Improved estimation in cumulative link models. J Roy Stat Soc Ser B 2013b. doi:10.1111/rssb.12025. ArXiv e‐prints. arXiv:1204.0105v3 [stat.ME].
Gourieroux, C, Monfort, A, Renault, E. Indirect inference. J Appl Econom 1993, 8S:85–118.
Kuk, AYC. Asymptotically unbiased estimation in generalized linear models with random effects. J Roy Statist Soc Ser B Methodol 1995, 57:395–407.
Jiang, W, Turnbull, B. The indirect method: inference based on intermediate statistics – synthesis and examples. Statist Sci 2004, 19:239–263.
Gourieroux, C, Renault, E, Touzi, N. Chapter 13: Calibration by simulation for small sample bias correction. In: Mariano, R, Schuermann, T, Weeks, MJ, eds. Simulation‐based Inference in Econometrics: Methods and Applications. 1st ed. Cambridge: Cambridge University Press; 2000, 328–358.
Phillips, PCB. Folklore theorems, implicit maps, and indirect inference. Econometrica 2012, 80:425–454.
Pfeffermann, D, Correa, S. Empirical bootstrap bias correction and estimation of prediction mean square error in small area estimation. Biometrika 2012, 99:457–472.
Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80:27–38.
Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc Roy Soc Lond 1946, 186:453–461.
Randall, J. The analysis of sensory data by generalised linear model. Biom J 1989, 7:781–793.
Peterson, B, Harrell, J, Frank, E. Partial proportional odds models for ordinal response variables. Appl Stat 1990, 39:205–217.
Christensen, RHB. Ordinal—regression models for ordinal data. R package version 2012.01‐19; 2012b. Available at: http://cran.r‐project.org/src/contrib/Archive/ordinal/. (Accessed September 20, 2013).
Christensen, RHB. Ordinal—a tutorial on fitting cumulative link models with the ordinal package. R package version 2012.01‐19; 2012a. Available at: http://cran.r‐project.org/src/contrib/Archive/ordinal/. (Accessed September 20, 2013).
Heinze, G, Ploner, M, Dunkler, D, Southworth, H. Logistf: Firth`s bias reduced logistic regression. R package version 1.21; 2013.
Colby, S, Lee, S, Lewinger, JP, Bull, S. Pmlr: Penalized Multinomial Logistic Regression. R package version 1.0; 2010.
Kosmidis, I. On iterative adjustment of responses for the reduction of bias in binary regression models. Technical Report 09‐36. CRiSM working paper series; 2009.
Kosmidis, I. brglm: Bias reduction in binary‐response Generalized Linear Models. R package version 0.5‐9; 2013a.
Espinheira, PL, Ferrari, SLP, Cribari‐Neto, F. On β regression residuals. J Appl Stat 2008, 35:407–419.
Bull, SB, Lewinger, JB, Lee, SSF. Confidence intervals for multinomial logistic regression in sparse data. Stat Med 2007, 26:903–918.
Kosmidis, I. Bias reduction in exponential family nonlinear models. Ph.D. thesis, Department of Statistics, University of Warwick; 2007.
Lancaster, T. The incidental parameter problem since 1948. J Econom 2000, 95:391–413.
Reid, N. Likelihood inference. Wiley Interdiscip Rev Comput Stat 2010, 2:517–525.
Bartolucci, F, Bellio, R, Salvan, A, Sartori, N. Modified profile likelihood for panel data models. Technical report. Available at SSRN repository; 2012.
Gouriéroux, C, Phillips, PCB, Yu, J. Indirect inference for dynamic panel models. J Econom 2010, 157:68–77.