Kroese, DP, Chan, JCC. Statistical Modeling and Computation. New York: Springer-Verlag; 2014.
Elperin, T, Gertsbakh, IB, Lomonosov, M. Estimation of network reliability using graph evolution models. IEEE Trans Reliab 1991, 40:572–581.
Fishman, GS. Monte Carlo: Concepts, Algorithms and Applications. New York: Springer‐Verlag; 1996.
Law, AM, Kelton, WD. Simulation Modeling and Analysis. 3rd ed. New York: McGraw‐Hill; 2000.
Rubinstein, RY, Kroese, DP. Simulation and the Monte Carlo Method. 2nd ed. New York: John Wiley %26 Sons; 2007.
Kroese, DP, Taimre, T, Botev, ZI. Handbook of Monte Carlo Methods. New York: John Wiley %26 Sons; 2011.
Rubinstein, RY, Kroese, DP. The Cross‐Entropy Method: A Unified Approach to Combinatorial Optimization, Monte‐Carlo Simulation, and Machine Learning. New York: Springer‐Verlag; 2004.
Choset, H, Lynch, KM, Hutchinson, S, Kantor, GA, Burgard, W, Kavraki, LE, Thrun, S. Principles of Robot Motion: Theory, Algorithms, and Implementations. Cambridge, MA: MIT Press; 2005.
Kavraki, LE, Svestka, P, Latombe, J‐C, Overmars, MH. Probabilistic roadmaps for path planning in high‐dimensional configuration spaces. IEEE Trans Robot Autom 1996, 12:566–580.
Metropolis, N. The beginning of the Monte Carlo method. Los Alamos Sci 1987, 15:125–130.
Metropolis, N, Rosenbluth, AW, Rosenbluth, MN, Teller, AH, Teller, E. Equations of state calculations by fast computing machines. J Chem Phys 1953, 21:1087–1092.
Ljungberg, M, Strand, S‐E, King, MA, eds. Monte Carlo Calculations in Nuclear Medicine, Second Edition: Applications in Diagnostic Imaging. Boca Raton, FL: CRC Press; 2012.
Sauvan, P, Sanz, J, Ogando, F. New capabilities for Monte Carlo simulation of deuteron transport and secondary products generation. Nucl Instrum Methods Phys Res A 2010, 614:323–330.
Gillespie, DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 1976, 22:403–434.
Gillespie, DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem 1977, 81:2340–2361.
Tuchin, VV. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. 2nd ed. Bellingham, WA: SPIE Press; 2007.
Springel, V. The cosmological simulation code gadget‐2. Mon Not R Astron Soc 2005, 364:1105–1134.
Badano, A, Kanicki, J. Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light‐emitting devices. J Appl Phys 2001, 90:1827–1830.
Mesta, M, Carvelli, M, de Vries, RJ, van Eersel, H, van der Holst, JJM, Schober, M, Furno, M, Lüssem, B, Leo, K, Loebl, P, et al. Molecular‐scale simulation of electroluminescence in a multilayer white organic light‐emitting diode. Nat Mater 2013, 12:652–658.
Stenzel, O, Koster, LJA, Thiedmann, R, Oosterhout, SD, Janssen, RAJ, Schmidt, V. A new approach to model‐based simulation of disordered polymer blend solar cells. Adv Funct Mater 2012, 22:1236–1244.
Thiedmann, R, Stenzel, O, Spettl, A, Shearing, PR, Harris, SJ, Brandon, NP, Schmidt, V. Stochastic simulation model for the 3d morphology of composite materials in Li‐Ion batteries. Comput Mater Sci 2011, 50:3365–3376.
Swendsen, RH, Wang, J‐S. Nonuniversal critical dynamics in Monte Carlo simulations. Phys Rev Lett 1987, 58:86–88.
Frisch, HL, Hammersley, JM, Welsh, DJ. Monte Carlo estimates of percolation probabilities for various lattices. Phys Rev 1962, 126:949–951.
Grimmett, G. Probability on Graphs: Random Processes on Graphs and Lattices. Cambridge, MA: Cambridge University Press; 2010.
Jerrum, M. Counting, Sampling and Integrating: Algorithms and Complexity. Basel, Switzerland: Birkhauser Verlag; 2003.
Lovász, L. Randomized algorithms in combinatorial optimization. DIMACS Ser Discrete Math Theor Comput Sci 1995, 25:153–179.
Mitzenmacher, M, Upfal, E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge, MA: Cambridge University Press; 2005.
Motwani, R, Raghavan, R. Randomized Algorithms. Cambridge, MA: Cambridge University Press; 1997.
Rubinstein, RY, Ridder, A, Vaisman, R. Fast Sequential Monte Carlo Methods for Counting and Optimization. New York: John Wiley %26 Sons; 2014.
Boyle, P. Options: a Monte Carlo approach. J Financ Econ 1977, 4:323–338.
Giles, MB. Multilevel Monte Carlo path simulation. Oper Res 2008, 56:607–617.
McNeil, AJ, Frey, R, Embrechts, P. Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press/Princeton Series in Finance: Princeton, NJ; 2005.
Glasserman, P. Monte Carlo Methods in Financial Engineering. New York: Springer‐Verlag; 2004.
Gerstner, T, Kloeden, PE, eds. Recent Developments in Computational Finance: Foundations, Algorithms and Applications. Singapore: World Scientific; 2013.
Liu, JS. Monte Carlo Strategies in Scientific Computing. New York: Springer‐Verlag; 2001.
Efron, B, Tibshirani, R. An Introduction to the Bootstrap. New York: Chapman %26 Hall; 1994.
Geman, S, Geman, D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984, 6:721–741.
Gilks, WR, Richardson, S, Spiegelhalter, DJ. Markov Chain Monte Carlo in Practice. New York: Chapman %26 Hall; 1996.
Robert, CP, Casella, G. Monte Carlo Statistical Methods. 2nd ed. New York: Springer‐Verlag; 2004.
Brooks, S, Gelman, A, Jones, G, Meng, X‐L. Handbook of Markov Chain Monte Carlo. Boca Raton, FL: CRC Press; 2011.
Costa, A, Jones, OD, Kroese, DP. Convergence properties of the cross‐entropy method for discrete optimization. Oper Res Lett 2007, 35:573–580.
Goschin, S, Weinstein, A, Littman, M. The cross‐entropy method optimizes for quantiles. In: Proceedings of The 30th International Conference on Machine Learning 2013, 1193–1201.
Margolin, L. On the convergence of the cross‐entropy method. Ann Oper Res 2005, 134:201–214.
Kroese, DP, Porotsky, S, Rubinstein, RY. The cross‐entropy method for continuous multi‐extremal optimization. Method Comput Appl Probab 2006, 8:383–407.
Bucklew, JA. Introduction to Rare Event Simulation. New York: Springer‐Verlag; 2004.
Chan, JCC, Kroese, DP. Improved cross‐entropy method for estimation. Stat Comput 2012, 22:1031–1040.
de Boer, P‐T, Kroese, DP, Mannor, S, Rubinstein, RY. A tutorial on the cross‐entropy method. Ann Oper Res 2005, 134:19–67.
Dick, J, Pillichshammer, F. Digital Nets and Sequences. Discrepancy Theory and Quasi‐Monte Carlo Integration. Cambridge, MA: Cambridge University Press; 2010.
Dick, J, Kuo, FY, Peters, GW, Sloan, IH. Monte Carlo and Quasi‐Monte Carlo Methods 2012. New York: Springer-Verlag; 2014.
Niederreiter, H. Random Number Generation and Quasi‐Monte Carlo Methods. Philadelphia, PA: SIAM; 1992.