Mardia, K, Kent, J, Bibby, J. Multivariate Analysis. London; New York: Academic Press; 1979.

McLachlan, GJ. Discriminant Analysis and Statistical Pattern Recognition. New York: John Wiley %26 Sons; 1992.

Stein, C. Estimation of a covariance matrix. *Rietz Lecture*, 1975.

Drton, M, Perlman, MD. Multiple testing and error control in Gaussian graphical model selection. Stat Sci 2007, 22:430–449.

Drton, M, Perlman, MD. A SINful approach to Gaussian graphical model selection. J Stat Plan Inference 2008, 138:1179–1200.

Naul, B, Taylor, J. Sparse Steinian covariance estimation. J Comput Graph Stat 2017, 26:355–366.

Meinshausen, N, Bühlmann, P. High dimensional graphs and variable selection with the LASSO. Ann Stat 2006, 34:1436–1462.

Zhang, B, Horvath, S. A general framework for weighted gene coexpression network analysis. Stat Appl Genet Mol Biol 2005, 4 Article 17.

Friedman, J, Hastie, T, Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9:432–441.

Witten, DM, Friedman, JH, Simon, N. New insights and faster computations for the graphical lasso. J Comput Graph Stat 2011, 20:892–900.

Mazumder, R, Hastie, T. Exact covariance thresholding into connected components for large‐scale graphical lasso. J Mach Learn Res 2012, 13:723–736.

Hsieh, C‐J, Sustik, MA, Dhillon, IS, Ravikumar, PK, Poldrack, R. BIG %26 QUIC: sparse inverse covariance estimation for a million variables. In: Burges, CJC, Bottou, L, Welling, M, Ghahramani, Z, Weinberger, KQ, eds. Advances in Neural Information Processing Systems, vol. 26. New York: Curran Associates, Inc.; 2013, 3165–3173.

Hsieh, C‐J, Sustik, MA, Dhillon, IS, Ravikumar, P. QUIC: quadratic approximation for sparse inverse covariance estimation. J Mach Learn Res 2014, 15:2911–2947.

Liu, W, Luo, X. Fast and adaptive sparse precision matrix estimation in high dimensions. J Multivar Anal 2015, 135:153–162.

Liu, H, Wang, L. TIGER: a tuning‐insensitive approach for optimally estimating Gaussian graphical models. Electron J Stat 2017, 11:241–294.

Warton, DI. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. J Am Stat Assoc 2008, 103:340–349.

Ledoit, O, Wolf, M. Honey, I shrunk the sample covariance matrix. J Portfolio Manage 2004, 30:110–119.

Ledoit, O, Wolf, M. A well‐conditioned estimator for large‐dimensional covariance matrices. J Multivar Anal 2004, 88:365–411.

Ledoit, O, Wolf, M. Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions. J Multivar Anal 2015, 139:360–384.

Ledoit, O, Wolf, M. Numerical implementation of the QuEST function. Comput Stat Data Anal 2017, 115:199–223.

Liu, H, Roeder, K, Wasserman, L. Stability approach to regularization selection (StARS) for high dimensional graphical models. In *Proceedings of the 23rd International Conference on Neural Information Processing Systems*, NIPS’10, Vancouver, British Columbia, Canada. New York: Curran Associates Inc.; 2010, 1432–1440.

Banerjee, O, Ghaoui, LE, d`Aspremont, A. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J Mach Learn Res 2008, 9:485–516.

Foygel, R, Drton, M. Extended Bayesian information criteria for Gaussian graphical models. Adv Neural Inf Process Syst 2010, 23:604–612.

Tibshirani, R. Regression shrinkage and selection via the LASSO. J R Stat Soc Series B 1996, 58:267–288.

Karypis, G, Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 1998, 20:359–392.

van Wieringen, W, Peeters, C. Ridge estimation of inverse covariance matrices from high‐dimensional data. Comput Stat Data Anal 2016, 103:284–303.

Kuismin, M, Kemppainen, JT, Sillanpää, MJ. Precision matrix estimation with ROPE. J Comput Graph Stat 2017, 26:682–694.

Kuismin, M, Sillanpää, MJ. Use of Wishart prior and simple extensions for sparse precision matrix estimation. PLoS One 2016, 11:e0148171.

Cai, T, Liu, W, Luo, X. A constrained *l*_{1} minimization approach to sparse precision matrix estimation. J Am Stat Assoc 2011, 106:594–607.

Candés, E, Tao, T. The Dantzig selector: statistical estimation when *p* is much larger than *n*. Ann Stat 2007, 35:2313–2351.

Belloni, A, Chernozhukov, V, Wang, L. Square‐root lasso: pivotal recovery of sparse signals via conic programming. Biometrika 2011, 98:791–806.

Yuan, M. High dimensional inverse covariance matrix estimation via linear programming. J Mach Learn Res 2010, 11:2261–2286.

Zhao, T, Liu, H, Roeder, K, Lafferty, J, Wasserman, L. The $huge$ package for high‐dimensional undirected graph estimation in R. J Mach Learn Res 2012, 13:1059–1062.

Bien, J, Tibshirani, RJ. Sparse estimation of a covariance matrix. Biometrika 2011, 98:807–820.

Zou, H. The adaptive lasso and its oracle properties. J Am Stat Assoc 2006, 101:1418–1429.

Deng, X, Tsui, K‐W. Penalized covariance matrix estimation using a matrix‐logarithm transformation. J Comput Graph Stat 2013, 22:494–512.

Won, J‐H, Lim, J, Kim, S‐J, Rajaratnam, B. Condition‐number‐regularized covariance estimation. J R Stat Soc Series B Stat Methodol 2013, 75:427–450.

Fang, Y, Wang, B, Feng, Y. Tuning parameter selection in regularized estimations of large covariance matrices. J Stat Comput Simul 2016, 86:494–509.

Meinshausen, N, Bühlmann, P. Stability selection. J R Stat Soc Series B Stat Methodol 2010, 72:417–473.

Whittaker, J. Graphical Models. West Sussex: John Wiley %26 Sons; 1990.

Edwards, D. Introduction to Graphical Modelling. 2nd ed. New York: Springer‐Verlag; 2000.

Ha, MJ, Sun, W. Partial correlation matrix estimation using ridge penalty followed by thresholding and re‐estimation. Biometrics 2014, 70:765–773.

Efron, B. Large‐scale simultaneous hypothesis testing: the choice of a distribution. J Am Stat Assoc 2004, 99:96–104.

Dezeure, R, Bühlmann, P, Meier, L, Meinshausen, N. High‐dimensional inference: confidence intervals, *p*‐values and R‐software $hdi$. Stat Sci 2015, 30:533–558.

Bühlmann, P, Kalisch, M, Meier, L. High‐dimensional statistics with a view toward applications in biology. Ann Rev Stat Appl 2014, 1:255–278.

Krzakala, F, Moore, C, Mossel, E, Neeman, J, Sly, A, Zdeborová, L, Zhang, P. Spectral redemption in clustering sparse networks. Proc Natl Acad Sci 2013, 110:20935–20940.

Ranola, JM, Langfelder, P, Lange, K, Horvath, S. Cluster and propensity based approximation of a network. BMC Syst Biol 2013, 7:21.

Langfelder, P, Mischel, PS, Horvath, S. When is hub gene selection better than standard meta‐analysis? PLoS One 2013, 8:1–16.

Äijö, T, Bonneau, R. Biophysically motivated regulatory network inference: progress and prospects. Hum Hered 2016, 81:62–77.

Bickel, PJ, Levina, E. Covariance regularization by thresholding. Ann Stat 2008, 36:2577–2604.

Eisen, MB, Spellman, PT, Brown, PO, Botstein, D. Cluster analysis and display of genome‐wide expression patterns. Proc Natl Acad Sci 1998, 95:14863–14868.

Langfelder, P, Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559.

Ghazalpour, A, Doss, S, Zhang, B, Wang, S, Plaisier, C, Castellanos, R, Brozell, A, Schadt, EE, Drake, TA, Lusis, AJ, et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2006, 2:1–11.

Li, Y, Jackson, SA. Gene network reconstruction by integration of prior biological knowledge. G3 2015, 5:1075–1079.

Wille, A, Zimmermann, P, Vranová, E, Fürholz, A, Laule, O, Bleuler, S, Hennig, L, Prelić, A, von Rohr, P, Thiele, L, et al. Sparse graphical Gaussian modeling of the isoprenoid gene network in *Arabidopsis thaliana*. Genome Biol 2004, 5:R92.

Shimamura, T, Imoto, S, Yamaguchi, R, Miyano, S. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Inform 2007, 19:142–153.

Jokipii‐Lukkari, S, Sundell, D, Nilsson, O, Hvidsten, TR, Street, NR, Tuominen, H. Norwood: a gene expression resource for evo‐devo studies of conifer wood development. New Phytol 2017, 216:482–494. https://doi.org/10.1111/nph.14458.

Krämer, N, Schäfer, J, Boulesteix, A‐L. Regularized estimation of large‐scale gene association networks using graphical Gaussian models. BMC Bioinformatics 2009, 10:384.

Ruan, J, Dean, AK, Zhang, W. A general co‐expression network‐based approach to gene expression analysis: comparison and applications. BMC Syst Biol 2010, 4:8.

Khondker, ZS, Zhu, H, Chu, H, Lin, W, Ibrahim, JG. The Bayesian covariance lasso. Stat Interface 2013, 6:243–259.

Wang, H. Bayesian graphical lasso models and efficient posterior computation. Bayesian Anal 2012, 7:867–886.

Bhadra, A, Mallick, BK. Joint high‐dimensional Bayesian variable and covariance selection with an application to eQTL analysis. Biometrics 2013, 69:447–457.

Kubokawa, T, Srivastava, MS. Estimation of the precision matrix of a singular Wishart distribution and its application in high‐dimensional data. J Multivar Anal 2008, 99:1906–1928.

Bouriga, M, Féron, O. Estimation of covariance matrices based on hierarchical inverse‐Wishart priors. J Stat Plan Inference 2013, 143:795–808.

Huang, A, Wand, MP. Simple marginally noninformative prior distributions for covariance matrices. Bayesian Anal 2013, 8:439–452.

Mohammadi, A, Wit, EC. $BDgraph$: an R package for Bayesian structure learning in graphical models. *ArXiv e‐prints*, January 2015.

Hastie, T, Tibshirani, R, Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin: Springer Series in Statistics Springer; 2009.

Hastie, T, Tibshirani, R, Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations. Boca Raton, FL: Chapman %26 Hall/CRC; 2015.

Pourahmadi, M. High‐Dimensional Covariance Estimation. New York: John Wiley %26 Sons; 2013.

Tong, T, Wang, C, Wang, Y. Estimation of variances and covariances for high‐dimensional data: a selective review. Wiley Interdiscip Rev Comput Stat 2014, 6:255–264.

Fan, J, Liao, Y, Liu, H. An overview of the estimation of large covariance and precision matrices. Econom J 2016, 19:C1–C32.