Alashwali,, F., & Kent,, J. T. (2016). The use of a common location measure in the invariant coordinate selection and projection pursuit. Journal of Multivariate Analysis, 152, 145–161. https://doi.org/10.1016/j.jmva.2016.08.007
Amari,, S., Cichocki,, A., & Yang,, H. (1996). A new learning algorithm for blind source separation. Advances in Neural Information Processing Systems, 8, 757–763.
Archimbaud,, A., Nordhausen,, K., & Ruiz‐Gazen,, A. (2016). ICS for multivariate outlier detection with application to quality control. arXiv preprint arXiv:1612.06118.
Basiri,, S., Ollila,, E., & Koivunen,, V. (2017). Enhanced bootstrap method for statistical inference in the ICA model. Signal Processing, 138, 53–62. https://doi.org/10.1016/j.sigpro.2017.03.005
Bell,, A. J., & Sejnowski,, T. J. (1995). An information‐maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. https://doi.org/10.1162/neco.1995.7.6.1129
Belouchrani,, A., Abed‐Meraim,, K., Cardoso,, J.‐F., & Moulines,, E. (1997). A blind source separation technique using second‐order statistics. IEEE Transactions on Signal Processing, 45(2), 434–444.
Blanchard,, G., Sugiyama,, M., Kawanabe,, M., Spokoiny,, V., & Müller,, K.‐R. (2005). Non‐Gaussian component analysis: A semi‐parametric framework for linear dimension reduction. In Advances in Neural Information Processing Systems (pp. 131–138). Vancouver: MIT Press.
Bugrien,, J., & Kent,, J. (2005). Independent component analysis: An approach to clustering. In K. M. S. Barber,, P. D. Baxter,, & R. Walls, (Eds.), Quantitative biology, shape analysis, and wavelets (pp. 111–114). Leeds: Leeds University Press.
Cardoso,, J.‐F. (1989). Source separation using higher order moments. In International Conference on Acoustics, Speech, and Signal Processing, 1989 (pp. 2109–2112). Glasgow, UK: IEEE.
Cardoso,, J.‐F., & Souloumiac,, A. (1993). Blind beamforming for non‐Gaussian signals. In IEE Proceedings F‐Radar and Signal Processing (Vol. 140, pp. 362–370). https://doi:10.1049/ip‐f‐2.1993.0054
Caussinus,, H., & Ruiz,, A. (1990). Interesting projections of multidimensional data by means of generalized principal component analysis. In K. Momirovic, & V. Mildner, (Eds.), Proceedings of Compstat 90 (pp. 121–126). Heidelberg, Germany: Physica Verlag.
Caussinus,, H., & Ruiz‐Gazen,, A. (1993). Projection pursuit and generalized principal component analysis. In S. Morgenthaler,, E. Ronchetti,, & W. A. Stahel, (Eds.), New directions in statistical data analysis and robustness (pp. 35–46). Basel, Switzerland: Birkhäuser Verlag.
Caussinus,, H., & Ruiz‐Gazen,, A. (1995). Metrics for finding typical structures by means of principal component analysis. In Y. Escoufier, & C. Hayashi, (Eds.), Data science and its applications (pp. 177–192). Tokyo, Japan: Academic Press.
Chen,, A., & Bickel,, P. J. (2006). Efficient independent component analysis. The Annals of Statistics, 34(6), 2825–2855.
Cichocki,, A., & Amari,, S.‐I. (2006). Adaptive blind signal and image processing. Chichester, England: Wiley.
Clarkson,, D. B. (1988). A least squares version of algorithm AS 211: The FG diagonalization algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 37(2), 317–321.
Comon,, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314. https://doi.org/10.1016/0165-1684(94)90029-9
Comon,, P., & Jutten,, C. (2010). Handbook of blind source separation: Independent component analysis and applications. Oxford: Academic Press.
de Lathauwer,, L., de Moor,, B., & Vandewalle,, J. (2000). Fetal electrocardiogram extraction by blind source subspace separation. IEEE Transactions on Biomedical Engineering, 47(5), 567–572.
Dermoune,, A., & Wei,, T. (2013). FastICA algorithm: Five criteria for the optimal choice of the nonlinearity function. IEEE Transactions on Signal Processing, 61(8), 2078–2087.
Ferraty,, F., & Vieu,, P. (2006). Nonparametric functional data analysis: Theory and practice. New York, NY: Springer.
Ferre,, L., & Yao,, A. F. (2003). Functional sliced inverse regression analysis. Statistics, 37, 475–488.
Ferre,, L., & Yao,, A. F. (2005). Smoothed functional inverse regression. Statistica Sinica, 15, 665–683.
Friedman,, J. H., & Tukey,, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, 100(9), 881–890.
Gauss,, C., & Davis,, C. (1857). Theory of the motion of the heavenly bodies moving about the sun in conic sections: A translation of Gauss`s “Theoria Motus” with an appendix. Boston: Little, Brown and Company.
Hallin,, M., & Mehta,, C. (2015). R‐estimation for asymmetric independent component analysis. Journal of the American Statistical Association, 110, 218–232.
Hastie,, T., & Tibshirani,, R. (2003). Independent components analysis through product density estimation. In Advances in Neural Information Processing Systems (pp. 665–672). Vancouver: MIT Press.
Hastie,, T., & Tibshirani,, R. (2010). ProDenICA: Product density estimation for ICA using tilted gaussian density estimates [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=ProDenICA (R package version 1.0)
Helwig,, N. E. (2015). ica: Independent component analysis [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=ica (R package version 1.0–1)
Horvath,, L., & Kokoszka,, P. (2012). Inference for functional data with applications. New York, NY: Springer.
Hsing,, T., & Ren,, H. (2009). An RKHS formulation of the inverse regression dimension‐reduction problem. Annals of Statistics, 37, 726–755.
Huber,, P. J. (1985). Projection pursuit. The Annals of Statistics, 13, 435–475.
Hyvärinen,, A. (1997). One‐unit contrast functions for independent component analysis: A statistical analysis. In Proceedings of the 1997 I.E. Workshop on Neural Networks for Signal Processing. (pp. 388–397). Amelia Island, FL: IEEE.
Hyvärinen,, A. (1998). New approximations of differential entropy for independent component analysis and projection pursuit. In M. I. Jordan,, M. J. Kearns,, & S. A. Solla, (Eds.), Advances in neural information processing systems 10 (pp. 273–279). Cambridge, MA: MIT Press.
Hyvärinen,, A. (1999). Fast and robust fixed‐point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626–634.
Hyvärinen,, A. (2001). Blind source separation by nonstationarity of variance: A cumulant‐based approach. IEEE Transactions on Neural Networks, 12(6), 1471–1474.
Hyvärinen,, A. (2013). Independent component analysis: Recent advances. Philosophical Transactions of the Royal Society A, 371, 20110534.
Hyvärinen,, A., Karhunen,, J., & Oja,, E. (2001). Independent component analysis. New York, NY: John Wiley %26 Sons.
Hyvärinen,, A., & Oja,, E. (1997). A fast fixed‐point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.
Hyvärinen,, A., & Oja,, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4), 411–430. https://doi.org/10.1016/S0893-6080(00)00026-5
Ibragimov,, I. A. (2014, May 1). On the Ghurye–Olkin–Zinger theorem. Journal of Mathematical Sciences, 199(2), 174–183. https://doi.org/10.1007/s10958-014-1845-8
Illner,, K., Miettinen,, J., Fuchs,, C., Taskinen,, S., Nordhausen,, K., Oja,, H., & Theis,, F. J. (2015). Model selection using limiting distributions of second‐order blind source separation algorithms. Signal Processing, 113, 95–103.
Ilmonen,, P., Nevalainen,, J., & Oja,, H. (2010). Characteristics of multivariate distributions and the invariant coordinate system. Statistics %26 Probability Letters, 80, 1844–1853.
Ilmonen,, P., Nordhausen,, K., Oja,, H., & Ollila,, E. (2010). A new performance index for ICA: Properties, computation and asymptotic analysis. In V. Vigneron, V. Zarzoso, E. Moreau, R. Gribonval, & E. Vincent, E. (Eds.), Latent Variable Analysis and Signal Separation, LNCS (Vol. 6365, pp. 229–236). Heidelberg: Springer.
Ilmonen,, P., & Paindaveine,, D. (2011). Semiparametrically efficient inference based on signed ranks in symmetric independent component models. The Annals of Statistics, 39, 2448–2476.
Jaynes,, E. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.
Jones,, M. C., & Sibson,, R. (1987). What is projection pursuit? Journal of the Royal Statistical Society. Series A (General), 150(1), 1–37.
Jutten,, C., & Taleb,, A. (2000). Source separation: From dusk till dawn. In Proceedings of the International Symposium on Independent Component Analysis and Blind Signal Separation (pp. 15–26). Helsinki: Helsinki University of Technology.
Karvanen,, J. (2008). PearsonICA: Independent component analysis using score functions from the Pearson system [Computer software manual]. (R package version 1.2‐3).
Karvanen,, J., & Koivunen,, V. (2002). Blind separation methods based on Pearson system and its extensions. Signal Processing, 82, 663–673.
Kim,, K., & Shevlyakov,, G. (2008). Why gaussianity? IEEE Signal Processing Magazine, 25(2), 102–113. https://doi.org/10.1109/MSP.2007.913700
Koldovský,, Z., & Tichavský,, P. (2015). Improved variants of the FastICA algorithm. In E. Bingham,, S. Kaski,, J. Laaksonen,, & J. Lampinen, (Eds.), Advances in independent component analysis and learning machines (pp. 53–74). London, England: Academic Press.
Lathauwer,, L. D., Castaing,, J., & Cardoso,, J. F. (2007). Fourth‐order cumulant‐based blind identification of underdetermined mixtures. IEEE Transactions on Signal Processing, 55(6), 2965–2973. https://doi.org/10.1109/TSP.2007.893943
Li,, B., & Song,, J. (2017). Nonlinear sufficient dimension reduction for functional data. Annals of Statistics, 45, 1059–1095.
Li,, B., Van Bever,, G., Oja,, H., Sabolová,, R., & Critchley,, F. (2015). Functional independent component analysis: An extension of the fourth‐order blind identification. (Submitted).
Li,, K.‐C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414), 316–327.
Liski,, E., Nordhausen,, K., & Oja,, H. (2014). Supervised invariant coordinate selection. Statistics, 48(4), 711–731. https://doi.org/10.1080/02331888.2013.800067
Luo,, W., & Li,, B. (2016). Combining eigenvalues and variation of eigenvectors for order determination. Biometrika, 103(4), 875–887.
Mansour,, A., Kawamoto,, M., & Ohnishi,, N. (2002). A survey of the performance indexes of ICA algorithms. In Proceedings of IASTED International Conference on Modelling, Identification, and Control (pp. 660–666). Innsbruck, Austria: ACTA Press.
Marchini,, J. L., Heaton,, C., & Ripley,, B. D. (2017). fastICA: FastICA algorithms to perform ICA and projection pursuit [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=fastICA (R package version 1.2–1)
Matilainen,, M., Croux,, C., Miettinen,, J., Nordhausen,, K., Oja,, H., & Taskinen,, S. (2017). tsBSS: Blind source separation and supervised dimension reduction for time series [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=tsBSS (R package version 0.4)
Matilainen,, M., Miettinen,, J., Nordhausen,, K., Oja,, H., & Taskinen,, S. (2017). On independent component analysis and stochastic volatility models. Austrian Journal of Statistics, 46, 57–66.
Matilainen,, M., Nordhausen,, K., & Oja,, H. (2015). New independent component analysis tools for time series. Statistics %26 Probability Letters, 105, 80–87.
Matteson,, D. S., & Tsay,, R. S. (2017). Independent component analysis via distance covariance. Journal of the American Statistical Association, 112(518), 623–637. https://doi.org/10.1080/01621459.2016.1150851
McCullagh,, P. (1987). Tensor methods in statistics. London, England: Chapman and Hall.
Miettinen,, J., Illner,, K., Nordhausen,, K., Oja,, H., Taskinen,, S., & Theis,, F. (2016). Separation of uncorrelated stationary time series using autocovariance matrices. Journal of Time Series Analysis, 37, 337–354.
Miettinen,, J., Nordhausen,, K., Oja,, H., & Taskinen,, S. (2012). Statistical properties of a blind source separation estimator for stationary time series. Statistics %26 Probability Letters, 82, 1865–1873.
Miettinen,, J., Nordhausen,, K., Oja,, H., & Taskinen,, S. (2013). Fast equivariant JADE. In 2013 I.E. International Conference on Acoustics, Speech and Signal Processing (pp. 6153–6157). Vancouver: IEEE.
Miettinen,, J., Nordhausen,, K., Oja,, H., & Taskinen,, S. (2014a). Deflation‐based fastICA with adaptive choices of nonlinearities. IEEE Transactions on Signal Processing, 62(21), 5716–5724.
Miettinen,, J., Nordhausen,, K., Oja,, H., & Taskinen,, S. (2014b). Deflation‐based separation of uncorrelated stationary time series. Journal of Multivariate Analysis, 123, 214–227.
Miettinen,, J., Nordhausen,, K., Oja,, H., & Taskinen,, S. (2017). fICA: Classical, reloaded and adaptive FastICA algorithms [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=fICA (R package version 1.1–0)
Miettinen,, J., Nordhausen,, K., Oja,, H., Taskinen,, S., & Virta,, J. (2017). The squared symmetric FastICA estimator. Signal Processing, 131, 402–411.
Miettinen,, J., Nordhausen,, K., & Taskinen,, S. (2017a). Blind source separation based on joint diagonalization in R: The packages JADE and BSSasymp. Journal of Statistical Software, 76(2), 1–31. https://doi.org/10.18637/jss.v076.i02
Miettinen,, J., Nordhausen,, K., & Taskinen,, S (2017b). fICA: FastICA algorithms and their improved variants. (Submitted)
Miettinen,, J., Taskinen,, S., Nordhausen,, K., & Oja,, H. (2015). Fourth moments and independent component analysis. Statistical Science, 30(3), 372–390.
Moreau,, E. (2001). A generalization of joint‐diagonalization criteria for source separation. IEEE Transactions on Signal Processing, 49(3), 530–541. https://doi.org/10.1109/78.905873
Nolan,, J. P. (2016). Stable distributions: Models for heavy‐tailed data. New York, NY: Springer.
Nordhausen,, K. (2014). On robustifying some second order blind source separation methods for nonstationary time series. Statistical Papers, 55(1), 141–156. https://doi.org/10.1007/s00362-012-0487-5
Nordhausen,, K., Gutch,, H. W., Oja,, H., & Theis,, F. J. (2012). Joint diagonalization of several scatter matrices for ICA. In F. Theis,, A. Cichocki,, A. Yeredor,, & M. Zibulevsky, (Eds.), Latent variable analysis and signal separation: 10th International Conference, LVA/ICA 2012, Tel Aviv, Israel, March 12‐15, 2012. Proceedings (pp. 172–179). Berlin and Heidelberg, Germany: Springer.
Nordhausen,, K., Ilmonen,, P., Mandal,, A., Oja,, H., & Ollila,, E. (2011). Deflation‐based FastICA reloaded. In 19th European Signal Processing Conference (pp. 1854–1858). Barcelona: Eurasip.
Nordhausen,, K., Oja,, H., & Ollila,, E. (2008). Robust independent component analysis based on two scatter matrices. Austrian Journal of Statistics, 37(1), 91–100.
Nordhausen,, K., Oja,, H., & Ollila,, E. (2011). Multivariate models and the first four moments. In D. R. Hunter,, D. S. R. Richards,, & J. L. Rosenberger, (Eds.), Nonparametric statistics and mixture models (pp. 267–287). Singapore: World Scientific.
Nordhausen,, K., Oja,, H., & Tyler,, D. E. (2008). Tools for exploring multivariate data: The package ICS. Journal of Statistical Software, 28(6), 1–31.
Nordhausen,, K., Oja,, H., & Tyler,, D. E. (2016). Asymptotic and bootstrap tests for subspace dimension. arXiv preprint arXiv:1611.04908.
Nordhausen,, K., Oja,, H., Tyler,, D. E., & Virta,, J. (2017a). Asymptotic and bootstrap tests for the dimension of the non‐Gaussian subspace. IEEE Signal Processing Letters, 24(6), 887–891.
Nordhausen,, K., Oja,, H., Tyler,, D. E., & Virta,, J. (2017b). ICtest: Estimating and testing the number of interesting components in linear dimension reduction [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=ICtest (R package version 0.3)
Nordhausen,, K., Ollila,, E., & Oja,, H. (2011). On the performance indices of ICA and blind source separation. In Proceedings of IEEE 12th3b2 pag International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2011) (pp. 486–490). San Francisco, CA: IEEE.
Nordhausen,, K., & Tyler,, D. E. (2015). A cautionary note on robust covariance plug‐in methods. Biometrika, 102, 573–588.
Oja,, H., Sirkiä,, S., & Eriksson,, J. (2006). Scatter matrices and independent component analysis. Australian Journal of Statistics, 35, 175–189.
Ollila,, E. (2010). The deflation‐based FastICA estimator: Statistical analysis revisited. IEEE Transactions on Signal Processing, 58(3), 1527–1541.
Ollila,, E., Kim,, H. J., & Koivunen,, V. (2008). Compact Cramer‐Rao bound expression for independent component analysis. IEEE Transactions on Signal Processing, 56(4), 1421–1428.
Ollila,, E., Oja,, H., & Koivunen,, V. (2008). Complex‐valued ICA based on a pair of generalized covariance matrices. Computational Statistics %26 Data Analysis, 52, 3789–3805.
Pena,, D., & Prieto,, F. J. (2001). Cluster identification using projections. Journal of the American Statistical Association, 96(456), 1433–1445. https://doi.org/10.1198/016214501753382345
Pena,, D., Prieto,, F. J., & Viladomat,, J. (2010). Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure. Journal of Multivariate Analysis, 101(9), 1995–2007. https://doi.org/10.1016/j.jmva.2010.04.014
R Core Team. (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/
Ramsay,, J. O., & Silverman,, B. W. (2005). Functional data analysis. New York, NY: Springer.
Risk,, B. B., James,, N. A., & Matteson,, D. S. (2015). SteadyICA: ICA and tests of independence via multivariate distance covariance [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=steadyICA (R package version 1.0)
Samworth,, R. J., & Yuan,, M. (2012). Independent component analysis via nonparametric maximum likelihood estimation. The Annals of Statistics, 40(6), 2973–3002.
Shannon,, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, July and October, 27, 379–423.
Shi,, Z., Jiang,, Z., & Zhou,, F. (2009). Blind source separation with nonlinear autocorrelation and non‐gaussianity. Journal of Computational and Applied Mathematics, 223(1), 908–915.
Tang,, A. C., Liu,, J.‐Y., & Sutherland,, M. T. (2005). Recovery of correlated neuronal sources from EEG: The good and bad ways of using SOBI. NeuroImage, 28(2), 507–519. https://doi.org/10.1016/j.neuroimage.2005.06.062
Taskinen,, S., Miettinen,, J., & Nordhausen,, K. (2016). A more efficient second order blind identification method for separation of uncorrelated stationary time series. Statistics %26 Probability Letters, 116, 21–26. https://doi.org/10.1016/j.spl.2016.04.007
Teschendorff,, A. (2012). mlica2: Independent component analysis using maximum likelihood [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=mlica2 (R package version 2.1)
Theis,, F. J., Kawanabe,, M., & Müller,, K. R. (2011). Uniqueness of non‐gaussianity‐based dimension reduction. IEEE Transactions on Signal Processing, 59(9), 4478–4482.
Tong,, L., Soon,, V., Huang,, Y., & Liu,, R. (1990). AMUSE: A new blind identification algorithm. In IEEE International Symposium on Circuits and Systems (pp. 1784–1787). New Orleans, LA: IEEE.
Tyler,, D. E., Critchley,, F., Dümbgen,, L., & Oja,, H. (2009). Invariant co‐ordinate selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71, 549–592.
van Zwet,, W. R. (1964). Convex transformations: A new approach to skewness and kurtosis. Statistica Neerlandica, 18(4), 433–441. https://doi.org/10.1111/j.1467-9574.1964.tb00530.x
Virta,, J., Li,, B., Nordhausen,, K., & Oja,, H. (2017a). Independent component analysis for multivariate functional data. arXiv preprint arXiv:1712.07641.
Virta,, J., Li,, B., Nordhausen,, K., & Oja,, H. (2017b). Independent component analysis for tensor‐valued data. Journal of Multivariate Analysis, 162, 172–192.
Virta,, J., Li,, B., Nordhausen,, K., & Oja,, H. (2017c). JADE for tensor‐valued observations. Journal of Computational and Graphical Statistics. (arXiv preprint arXiv:1603.05406). https://doi.org/10.1080/10618600.2017.1407324
Virta,, J., Li,, B., Nordhausen,, K., & Oja,, H. (2017d). tensorBSS: Blind source separation methods for tensor‐valued observations [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=tensorBSS (R package version 0.3.3)
Virta,, J., & Nordhausen,, K. (2017a). Blind source separation for nonstationary tensor valued time series. In IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1–6). doi: https://doi.org/10.1109/MLSP.2017.8168122. Tokyo: IEEE.
Virta,, J., & Nordhausen,, K. (2017b). Blind source separation of tensor‐valued time series. Signal Processing, 141, 204–216.
Virta,, J., & Nordhausen,, K. (2017c). On the optimal non‐linearities for Gaussian mixtures in FastICA. In P. Tichavsky, M. Babaie‐Zadeh, O. Michel, & N. Thirion‐Moreau (Eds.), Latent Variable Analysis and Signal Separation, LNCS (Vol. 10169, pp. 427–437). Cham, Switzerland: Springer.
Virta,, J., Nordhausen,, K., & Oja,, H. (2015). Joint use of third and fourth cumulants in independent component analysis. (Unpublished manuscript). Preprint at arXiv:1505.02613.
Virta,, J., Taskinen,, S., & Nordhausen,, K. (2016). Applying fully tensorial ICA to fMRI data. In 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (p. 1–6). Philadelphia, PA: IEEE. doi: https://doi.org/10.1109/SPMB.2016.7846858
Wei,, T. (2015). A convergence and asymptotic analysis of the generalized symmetric FastICA algorithm. IEEE Transactions on Signal Processing, 63(24), 6445–6458.
Yao,, F., Müller,, H.‐G., & Wang,, J.‐L. (2005a). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470), 577–590.
Yao,, F., Müller,, H.‐G., & Wang,, J.‐L. (2005b). Functional linear regression analysis for longitudinal data. Annals of Statistics, 33, 2873–2903.
Zarzoso,, V., & Comon,, P. (2010). Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Transactions on Neural Networks, 21(2), 248–261. https://doi.org/10.1109/TNN.2009.2035920