Anderson‐Bergman,, C. (2014). R package ‘logconPH’: CoxPH model with log concave base‐line distribution. Retrieved from http://cran.r-project.org/package=logconPH
Anderson‐Bergman,, C., & Yu,, Y. (2016). Computing the log concave NPMLE for interval censored data. Statistics and Computing, 26, 813–826.
Ayer,, M., Brunk,, H. D., Ewing,, G. M., Reid,, W. T., & Silverman,, E. (1955). An empirical distribution function for sampling with incomplete information. Annals of Mathematical Statistics, 26, 641–647.
Balabdaoui,, F., Jankowski,, H., Rufibach,, K., & Pavlides,, M. (2013). Asymptotics of the discrete log‐concave maximum likelihood estimator and related applications. Journal of the Royal Statistical Society, Series B, 75, 769–790.
Best,, M. J., & Chakravarti,, N. (1990). Active set algorithms for isotonic regression ‐ a unifying framework. Mathematical Programming, 47, 425–439.
Cule,, M., Samworth,, R., & Stewart,, M. (2010). Maximum likelihood estimation of a multidimensional log‐concave density (with discussion). Journal of the Royal Statistical Society, Series B, 72, 545–576.
Dümbgen,, L., Freitag‐Wolf,, S., & Jongbloed,, G. (2006). Estimating a unimodal distribution from interval‐censored data. Journal of the American Statistical Association, 101, 1094–1106.
Dümbgen,, L., Hasler,, A., %26 Rufibach,, K. (2011). Active set and EM algorithms for log‐concave densities based on complete and censored data. (arXiv:0707.4643v4)
Dümbgen,, L., & Rufibach,, K. (2011). Logcondens: Computations related to univariate log‐concave density estimation. Journal of Statistical Software, 39, 1–28.
Fedorov,, V. V. (1972). Theory of optimal experiments. New York, NY: Academic Press.
Groeneboom,, P. (1991). Nonparametric maximum likelihood estimators for interval censoring and deconvolution (Technical Report No. 378). Department of Statistics, Stanford University.
Groeneboom,, P., Jongbloed,, G., & Wellner,, J. A. (2008). The support reduction algorithm for computing nonparametric function estimates in mixture models. Scandinavian Journal of Statistics, 35, 385–399.
Grotzinger,, S. J., & Witzgall,, C. (1984). Projection onto order simplexes. Applied Mathematics and Optimization, 12, 247–270.
Jongbloed,, G. (1998). The iterative convex minorant algorithm for nonparametric estimation. Journal of Computational and Graphical Statistics, 7, 301–321.
Kooperberg,, C., & Stone,, C. J. (1991). A study of logspline density estimation. Computational Statistics %26 Data Analysis, 12, 327–347.
Kooperberg,, C., & Stone,, C. J. (1992). Logspline density estimation for censored data. Journal of Computational and Graphical Statistics, 1, 301–328.
Lawson,, C. L., & Hanson,, R. J. (1974). Solving least squares problems. Englewood Cliffs, NJ: Prentice‐Hall, Inc.
Liu,, Y., & Wang,, Y. (2018a). A fast algorithm for univariate log‐concave density estimation. Australia %26 New Zealand Journal of Statistics, 60, 258–275.
Liu,, Y., %26 Wang,, Y. (2018b). R package cninlcd:Maximum likeli‐hood estimation of a log‐concave density function (version 1.2‐0). Retrieved from http : //cran . r‐pro j ect . org/package=cnmlcd
Nocedal,, J., & Wright,, S. (2006). Numerical optimization (2nd ed.). New York, NY: Springer.
Pardalos,, P. M., & Xue,, G. (1999). Algorithms for a class of isotonic regression problems. Algorithmica, 23, 211–222.
Rufibach,, K. (2007). Computing maximum likelihood estimators of a log‐concave density function. Journal of Statistical Computation and Simulation, 77, 561–574.
Rufibach,, K., %26 Dümbgen,, L. (2016). R package `logcondens`: Estimate a log‐concave probability density from iid observations (version 2.1.5). Retrieved from http://cran.r‐project.org/package=logcondens
Silverman,, B. W. (1982). On the estimation of a probability density function by the maximum penalized likelihood method. Annals of Statistics, 10, 795–810.
Terlaky,, T., & Vial,, J.‐P. (1998). Computing maximum likelihood estimators of convexdensity functions. SIAM Journal on Scientific Computing, 19, 675–694.
Wang,, Y. (2007). On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution. Journal of the Royal Statistical Society, Series B, 69, 185–198.
Wynn,, H. P. (1970). The sequential generation of D‐optimal experimental design. Annals of Mathematical Statistics, 41, 1655–1664.