Adachi,, K. (2012). Some contributions to data‐fitting factor analysis with empirical comparisons to covariance‐fitting factor analysis. Journal of the Japanese Society of Computational Statistics, 25, 25–38.
Adachi,, K. (2013). Factor analysis with EM algorithm never gives improper solutions when sample covariance and initial parameter matrices are proper. Psychometrika, 78, 380–394.
Adachi,, K. (2015a). A new algorithm for generalized least squares factor analysis with a majorization technique. Open Journal of Statistics, 5, 165–172.
Adachi,, K. (2015b). A matrix‐intensive approach to factor analysis. Journal of the Japan Statistical Society, Japanese Issue, 44, 363–382 (in Japanese).
Adachi,, K. (2016). Matrix‐based introduction to multivariate data analysis. Singapore: Springer.
Adachi,, K., & Trendafilov,, N. T. (2015). Sparse orthogonal factor analysis. In E. Carpita,, E. Brentari,, & E. M. Qannari, (Eds.), Advances in latent variable: Methods, models, and applications (pp. 227–239). Cham, Switzerland: Springer.
Adachi,, K., & Trendafilov,, N. T. (2018). Some mathematical properties of the matrix decomposition solution in factor analysis. Psychometrika, 83, 407–424.
Akaike,, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
Anderson,, T. W. (2003). An introduction to multivariate statistical analysis (3rd ed.). New York, NY: Wiley.
Anderson,, T. W., & Rubin,, H. (1956). Statistical inference in factor analysis. In J. Neyman, (Ed.), Proceedings of the third Berkeley symposium on mathematical statistics and probability (Vol. 5, pp. 111–150). Berkeley: University of California Press.
Bartholomew,, D., Knott,, M., & Moustaki,, I. (2011). Latent variable models and factor analysis: A unified approach (3rd ed.). Chichester, England: Wiley.
Bertsimas,, D., Copenhaver,, M. S., & Mazumder,, R. (2017). Certifiably optimal low rank factor analysis. Journal of Machine Learning Research, 18, 1–53.
Boyd,, S., Parikh,, N., Chu,, B., Peleato,, B., & Eckstein,, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 1042–1068.
Browne,, M. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150.
de Leeuw,, J. (2004). Least squares optimal scaling of partially observed linear systems. In b. K. van Montfort,, J. Oud,, & A. Satorra, (Eds.), Recent developments of structural equation models: Theory and applications (pp. 121–134). Dordrecht, the Netherlands: Kluwer Academic.
Dempster,, A. P., Laird,, N. M., & Rubin,, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.
Eckart,, C., & Young,, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211–218.
Guttman,, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common factor theory. British Journal of Statistical Psychology, 8, 65–81.
Harman,, H. H. (1976). Modern factor analysis (3rd ed.). Chicago, IL: The University of Chicago Press.
Harman,, H. H., & Jones,, W. H. (1966). Factor analysis by minimizing residuals (Minres). Psychomerika, 31, 351–369.
Hirose,, K., & Yamamoto,, M. (2014). Estimation of an oblique structure via penalized likelihood factor analysis. Computational Statistics and Data Analysis, 79, 120–132.
Izenman,, A. J. (2008). Modern multivariate statistical techniques: Regression, classification, and manifold learning. New York, NY: Springer.
Jennrich,, R. I., & Robinson,, S. M. (1969). A Newton‐Raphson algorithm for maximum likelihood factor analysis. Psychometrika, 34, 111–123.
Jöreskog,, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443–482.
Jöreskog,, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
Kaiser,, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.
Kano,, Y. (1998). Causes and treatment of improper solutions: Exploratory factor analysis. Bulletin of the Department of Human Sciences, Osaka University, 24, 303–327 (in Japanese).
Koch,, I. (2014). Analysis of multivariate and high‐dimensional data. New York, NY: Cambridge University Press.
Kodama,, S., Shinagawa,, F., & Mogi,, M. (1978). Nihongo‐ban WISC‐R chino‐kensa‐ho (Japanese version of WISC‐R intelligence test). Tokyo, Japan: Nihon Bunka Kagaku Sha (in Japanese).
Lawley,, D. N. (1941). Further investigation of factor estimation. Proceedings of the Royal Society of Edinburgh, A61, 176–185.
Lee,, S. Y. (1978). The gauss‐Newton algorithm for the weighted least squares factor analysis. Journal of the Royal Statistical Society: Series D (The Statistician), 27, 103–114.
Mulaik,, S. A. (2010). Foundations of factor analysis (2nd ed.). Boca Raton, FL: CRC Press.
R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, ISBN: 3–900051–07‐0. Retrieved from http://www.R-project.org
Rao,, C. R. (1955). Estimation and tests of significance in factor analysis. Psychometrika, 20, 93–111.
Rubin,, D. B., & Thayer,, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 69–76.
SAS Institute Inc. (2009). SAS/STAT® 9.2 users guide, version (2nd ed.). Cary, NC: SAS Institute Inc.
Schwarz,, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Shapiro,, A., & ten Berge,, J. M. F. (2002). Statistical inference of minimum rank factor analysis. Psychometrika, 67, 79–94.
Sočan,, G. (2003). The incremental value of minimum rank factor analysis. In PhD thesis. Groningen, the Netherlands: University of Groningen.
Spearman,, C. (1904). “General intelligence”, objectively determined and measured. American Journal of Psychology, 15, 201–293.
SPSS. (1997). SPSS® 7.5 statistical algorithms. Chicago, IL: Author.
Stegeman,, A. (2016). A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts. Computational Statistics and Data Analysis, 99, 189–203.
ten Berge,, J. M. F. (1983). A generalization of Kristof`s theorem on the trace of certain matrix products. Psychometrika, 48, 519–523.
ten Berge,, J. M. F. (2000). Linking reliability and factor analysis: Recent developments in some classic psychometric problems. In S. E. Hampson, (Ed.), Advances in personality psychology (Vol. 1, pp. 138–156). London, England: Routledge.
ten Berge,, J. M. F., & Kiers,, H. A. L. (1991). A numerical approach to the exact and the approximate minimum rank of a covarianxce matrix. Psychometrika, 56, 309–315.
Thurstone,, L. L. (1935). The vectors of mind. Chicago, IL: University of Chicago Press.
Tipping,, M. E., & Bishop,, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 611–622.
Trendafilov,, N. T., Fontanella,, S., & Adachi,, K. (2017). Sparse exploratory factor analysis. Psychometrika, 82, 778–794.
Unkel,, S., & Trendafilov,, N. T. (2010). Simultaneous parameter estimation in exploratory factor analysis: An expository review. International Statistical Review, 78, 363–382.
Yanai,, H., & Ichikawa,, M. (2007). Factor analysis. In C. R. Rao, & S. Sinharay, (Eds.), Handbook of statistics vol. 26: Psychometrics (pp. 257–296). Amsterdam, the Netherlands: Elsevier.