Aronszajn,, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337–404.
Berlinet,, A., & Thomas‐Agnan,, C. (2004). Reproducing kernel Hilbert spaces in probability and statistics. New York: Springer Science %26 Business Media.
Bura,, E., & Cook,, D. (2001). Estimating the structural dimension of regressions via parametric inverse. Journal of the Royal Statistical Society, Series B, 63, 393–410.
Conway,, J. B. (1990). A course in functional analysis (2nd ed.). New York: Springer‐Verlag.
Cook,, R., Forzani,, L., & Yao,, A. (2010). Necessary and sufficient conditions for consistency of a method for smoothed functional inverse regression. Statistica Sinica, 20(1), 235–238.
Cook,, R. D., & Weisberg,, S. (1991). Sliced inverse regression for dimension reduction: Comment. Journal of the American Statistical Association, 86(414), 328–332.
Eaton,, M. L. (1986). A characterization of spherical distributions. Journal of Multivariate Analysis, 20(2), 272–276.
Ferré,, L., & Yao,, A. F. (2003). Functional sliced inverse regression analysis. Statistics: A Journal of Theoretical and Applied Statistics, 37(6), 475–488.
Ferré,, L., & Yao,, A.‐F. (2005). Smoothed functional inverse regression. Statistica Sinica, 15(3), 665–683.
Fukumizu,, K., Bach,, F. R., & Gretton,, A. (2007). Statistical consistency of kernel canonical correlation analysis. Journal of Machine Learning Research, 8, 361–383.
Fung,, W. K., He,, X., Liu,, L., & Shi,, P. (2002). Dimension reduction based on canonical correlation. Statistica Sinica, 12(4),1093–1113.
Gu,, C. (2013). Smoothing spline ANOVA models (Vol. 297). New York: Springer Science %26 Business Media.
Hall,, P., & Li,, K.‐C. (1993). On almost linearity of low dimensional projections from high dimensional data. The Annals of Statistics, 21, 867–889.
Hsing,, T., & Eubank,, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators. West Sussex, England: John Wiley %26 Sons.
Hsing,, T., & Ren,, H. (2009). An rkhs formulation of the inverse regression dimension‐reduction problem. The Annals of Statistics, 37(2), 726–755.
Lee,, K.‐Y., Li,, B., & Chiaromonte,, F. (2013). A general theory for nonlinear sufficient dimension reduction: Formulation and estimation. The Annals of Statistics, 41(1), 221–249.
Li,, B. (2018). Sufficient dimension reduction: Methods and applications with R. New York: Chapman and Hall/CRC Press.
Li,, B., Artemiou,, A., & Li,, L. (2011). Principal support vector machines for linear and nonlinear sufficient dimension reduction. The Annals of Statistics, 39(6), 3182–3210.
Li,, B., & Song,, J. (2017). Nonlinear sufficient dimension reduction for functional data. The Annals of Statistics, 45(3), 1059–1095.
Li,, B. & Song,, J. (2018). Dimension reduction for functional data based on weak conditional moments. Submitted.
Li,, B., & Wang,, S. (2007). On directional regression for dimension reduction. Journal of the American Statistical Association, 102, 997–1008.
Li,, B., Zha,, H., & Chiaromonte,, F. (2005). Contour regression: A general approach to dimension reduction. The Annals of Statistics, 33(4), 1580–1616.
Li,, K.‐C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414), 316–327.
Lian,, H., & Li,, G. (2014). Series expansion for functional sufficient dimension reduction. Journal of Multivariate Analysis, 124, 150–165.
Llorens,, D., Prat,, F., Marzal,, A., Vilar,, J. M., Castro,, M. J., Amengual,, J. C., … Zamora,, F. (2008). The ujipenchars database: A pen‐based database of isolated handwritten characters. Paper presented at the Proceedings of 6th International Conference on Language Resources Evaluation (pp. 2647–2651).
Ma,, Y., & Zhu,, L. (2012). A semiparametric approach to dimension reduction. Journal of the American Statistical Association, 107(497), 168–179.
Minh,, H. Q. (2010). Some properties of gaussian reproducing kernel hilbert spaces and their implications for function approximation and learning theory. Constructive Approximation, 32(2), 307–338.
Murphy,, G. (1990). C*‐algebras and operator theory. New York: Academic Press.
Vapnik,, V. (1998). Statistical learning theory. 1998 (Vol. 3). New York, NY: Wiley.
Wang,, G., Lin,, N., & Zhang,, B. (2013). Functional contour regression. Journal of Multivariate Analysis, 116, 1–13.
Weidmann,, J. (1980). Linear operators in Hilbert spaces, volume 68. New York: Springer‐Verlag.
Wu,, H.‐M. (2008). Kernel sliced inverse regression with applications to classification. Journal of Computational and Graphical Statistics, 17(3), 590–610.
Xia,, Y., Tong,, H., Li,, W., & Zhu,, L.‐X. (2002). An adaptive estimation of dimension reduction space. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 64(3), 363–410.
Yeh,, Y.‐R., Huang,, S.‐Y., & Lee,, Y.‐J. (2009). Nonlinear dimension reduction with kernel sliced inverse regression. IEEE Transactions on Knowledge and Data Engineering, 21(11), 1590–1603.
Yin,, X., & Bura,, E. (2005). Moment based dimension reduction for multivariate response regression. Journal of Statistical Planning and Inference, 136, 3675–3688.
Zhu,, L.‐X., & Fang,, K.‐T. (1996). Asymptotics for kernel estimate of sliced inverse regression. The Annals of Statistics, 24(3), 1053–1068.