AFSC. (2018). Canada‐Alberta AgriInsurance products for 2018 annual crops (Tech. Rep.). Lacombe, AB: Agriculture Financial Services Corporation Retrieved from https:// www.afsc.ca/doc.aspx?id=8067
Ahmed,, O., & Serra,, T. (2015). Economic analysis of the introduction of agricultural revenue insurance contracts in Spain using statistical copulas. Agricultural Economics, 46(1 ), 69–79. https://doi.org/10.1111/agec.12141
Alexandridis,, A. K., & Zapranis,, A. D. (2013). Weather derivatives: Modeling and pricing weather‐related risk. New York, NY: Springer‐Verlag .
Benjamin,, M. A., Rigby,, R. A., & Stasinopoulos,, D. M. (2003). Generalized autoregressive moving average models. Journal of the American Statistical Association, 98(461 ), 214–223. https://doi.org/10.1198/016214503388619238
Black,, E., Greatrex,, H., Young,, M., & Maidment,, R. (2016). Incorporating satellite data into weather index insurance. Bulletin of the American Meteorological Society, 97(10 ), ES203–ES206. https://doi.org/10.1175/BAMS-D-16-0148.1
Chatterjee,, S., & Hadi,, A. S. (2006). Regression analysis by example. Hoboken, NJ: John Wiley %26 Sons .
Cheng,, C. S., Li,, Q., Li,, G., & Auld,, H. (2012). Climate change and heavy rainfall‐related water damage insurance claims and losses in Ontario, Canada. Journal of Water Resource and Protection, 4, 49–62. https://doi.org/10.4236/jwarp.2012.42007
Choudhury,, A., Jones,, J., Okine,, A., & Choudhury,, R. (2016). Drought‐triggered index insurance using cluster analysis of rainfall affected by climate change. Journal of Insurance Issues, 39(2 ), 169–186.
Conradt,, S., Finger,, R., & Bokusheva,, R. (2015). Tailored to the extremes: Quantile regression for index‐based insurance contract design. Agricultural Economics, 46(4 ), 537–547. https://doi.org/10.1111/agec.12180
Conradt,, S., Finger,, R., & Spörri,, M. (2015). Flexible weather index‐based insurance design. Climate Risk Management, 10, 106–117. https://doi.org/10.1016/j.crm.2015.06.003
Crane‐Droesch,, A. (2018). Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11 ), 114003. https://doi.org/10.1088/1748-9326/aae159
Curry,, L., Weaver,, A., & Wiebe,, E. (2012). Determining the impact of climate change on insurance risk and the global community. Phase I: Key climate indicators (Tech. Rep.). Victoria, BC: American Academy of Actuaries` Property/Casualty Extreme Events Committee, CAS, CIA, and SOA. Retrieved from https://www.soa.org/ research‐reports/2012/research‐2012‐climate‐change‐reports/
Dalhaus,, T., & Finger,, R. (2016). Can gridded precipitation data and phenological observations reduce basis risk of weather indexbased insurance? Weather, Climate, and Society, 8(4 ), 409–419. https://doi.org/10.1175/WCAS-D-16-0020.1
Daron,, J. D., & Stainforth,, D. A. (2014). Assessing pricing assumptions for weather index insurance in a changing climate. Climate Risk Management, 1, 76–91. https://doi.org/10.1016/j.crm.2014.01.001
de Leeuw,, J., Vrieling,, A., Shee,, A., Atzberger,, C., Hadgu,, K. M., Biradar,, C. M., … Turvey,, C. (2014). The potential and uptake of remote sensing in insurance: A review. Remote Sensing, 6(11 ), 10888–10912. https://doi.org/10.3390/rs61110888
Doms,, J. (2017). Put, call or strangle? About the challenges in designing weather index insurances to hedge performance risk in agriculture. 57th Annual Conference, Weihenstephan, Germany, September 13‐15, 2017 No. 261990. German Association of Agricultural Economists (GEWISOLA). Retrieved from https://ideas.repec.org/ p/ags/gewi17/261990.html
Donat,, M. G., Leckebusch,, G. C., Wild,, S., & Ulbrich,, U. (2010). Benefits and limitations of regional multi‐model ensembles for storm loss estimations. Climate Research, 44(2–3 ), 211–225. https://doi.org/10.3354/cr00891
Donat,, M. G., Leckebusch,, G. C., Wild,, S., & Ulbrich,, U. (2011). Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi‐model simulations. Natural Hazards and Earth System Sciences, 11(5 ), 1351–1370. https://doi.org/10.5194/nhess-11-1351-2011
Environment Canada. (2017). Top ten weather stories for 2012: Story four. Ottawa: Environment of Canada. https:// ec.gc.ca/meteo-weather/default.asp?lang=En%26n=70B4A3E9-1 (Online).
Erhardt,, R. J. (2017). Climate, weather and environmental sources for actuaries (Tech. Rep.). Schaumburg, IL: Society of Actuaries. Retrieved from https://www.soa.org/ research‐reports/2017/climate‐weather‐environmental‐sources/.
Frees,, E. W., Meyers,, G., & Cummings,, A. D. (2012). Predictive modeling of multi‐peril homeowners insurance. Variance, 6(1 ), 11–31.
Gerlt,, S., Thompson,, W., & Miller,, D. J. (2014). Exploiting the relationship between farm‐level yields and county‐level yields for applied analysis. Journal of Agricultural and Resource Economics, 39(2 ), 253–270.
Goodwin,, B. K. (2015). Copula‐based models of systemic risk in U.S. American Journal of Agricultural Economics, 97(3 ), 879–896.
Grace,, M. F., Klein,, R. W., & Kleindorfer,, P. R. (2004). Homeowners insurance with bundled catastrophe coverage. Journal of Risk and Insurance, 71(3 ), 351–379. https://doi.org/10.1111/j.0022-4367.2004.00094.x
Hall,, R. D. (2017, April/May 2017). Analyzing extreme weather. The Actuary .
Hastie,, T. J., Tibshirani,, R. J., & Friedman,, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York, NY: Springer . https://doi.org/10.1007/978-0-387-84858-7
Haug,, O., Dimakos,, X. K., Vardal,, J. F., Aldrin,, M., & Meze‐Hausken,, E. (2011). Future building water loss projections posed by climate change. Scandinavian Actuarial Journal, 1, 1–20. https://doi.org/10.1080/03461230903266533
Held,, H., Gerstengarbe,, F.‐W., Pardowitz,, T., Pinto,, J. G., Ulbrich,, U., Born,, K., … Burgho,, O. (2013). Projections of global warming induced impacts on winterstorm losses in the German private household sector. Climatic Change, 121(2 ), 195–207. https://doi.org/10.1007/s10584-013-0872-7
IFoA. (2017). Data science in insurance: Opportunities and risks for consumers—Policy briefing (Tech. Rep.). Institute and Faculty of Actuaries (IFoA). Retrieved from https://www.actuaries.org.uk/documents/policy-briefing-data-science ‐insurance‐opportunities‐and‐risks‐consumers.
Kamilaris,, A., & Prenafeta‐Boldu,, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016
Klawa,, M., & Ulbrich,, U. (2003). A model for the estimation of storm losses and the identification of severe winter storms in Germany. Natural Hazards and Earth System Science, 3(6 ), 725–732. https://doi.org/10.5194/nhess-3-725-2003
Kohn,, R., Schimek,, M. G., & Smith,, M. (2000). Spline and kernel regression for dependent data. In M. G. Schimek, (Ed.), Smoothing and regression: Approaches, computation, and application (pp. 135–158). New York, NY: John Wiley %26 Sons, Inc. . https://doi.org/10.1002/9781118150658.ch6
Kung,, H.‐Y., Kuo,, T.‐H., Chen,, C.‐H., & Tsai,, P.‐Y. (2016). Accuracy analysis mechanism for agriculture data using the ensemble neural network method. Sustainability, 8(8 ), 735. https://doi.org/10.3390/su8080735
Kuwata,, K., & Shibasaki,, R. (2015). Estimating crop yields with deep learning and remotely sensed data. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), (pp. 858–861). Milan, Italy.
Kuwata,, K., & Shibasaki,, R. (2016). Estimating corn yield in the United States with MODIS EVI and machine learning methods. In ISPRS annals of photogrammetry, remote sensing & spatial information sciences, vol. 3 (8).
Leblois,, A., & Quirion,, P. (2013). Agricultural insurances based on meteorological indices: Realizations, methods and research challenges. Meteorological Applications, 20(1 ), 1–9. https://doi.org/10.1002/met.303
Liakos,, K. G., Busato,, P., Moshou,, D., Pearson,, S., & Bochtis,, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8 ), 2674. https://doi.org/10.3390/s18082674
Lyubchich,, V., & Gel,, Y. R. (2017). Can we weather proof our insurance? Environmetrics, 28(2 ), e2433. https://doi.org/10.1002/env.2433
Lyubchich,, V., Kilbourne,, K. H., & Gel,, Y. R. (2017). Where home insurance meets climate change: Making sense of climate risk, data uncertainty, and projections. Variance. Retrieved from https://www.variancejournal.org/articlespress/ articles/Home‐Lyubchich.pdf (in press).
Moriondo,, M., Argenti,, G., Ferrise,, R., Dibari,, C., Trombi,, G., & Bindi,, M. (2016). Heat stress and crop yields in the Mediterranean basin: Impact on expected insurance payouts. Regional Environmental Change, 16(7 ), 1877–1890. https://doi.org/10.1007/s10113-015-0837-7
Newlands,, N. K., Ghahari,, A., Gel,, Y. R., Lyubchich,, V., & Mahdi,, T. (2019). Deep learning for improved agricultural risk management. In Proceedings of the 52nd Hawaii international conference on system sciences (HICSS) (pp. 1033–1042). Maui, HI.
NOAA. (2018). U.S. Billion‐dollar weather and climate disasters. National Centers for Environmental Information (NCEI). Retrieved from https://www.ncdc.noaa.gov/ billions/.
Odening,, M., & Shen,, Z. (2014). Challenges of insuring weather risk in agriculture. Agricultural Finance Review, 74(2 ), 188–199. https://doi.org/10.1108/AFR-11-2013-0039
Pacheco,, J. M., Santos,, F. C., & Levin,, S. A. (2016). Evolutionary dynamics of collective index insurance. Journal of Mathematical Biology, 72(4 ), 997–1010. https://doi.org/10.1007/s00285-015-0939-3
Pantazi,, X. E., Moshou,, D., Alexandridis,, T., Whetton,, R. L., & Mouazen,, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57–65. https://doi.org/10.1016/j.compag.2015.11.018
Patel,, K. (2018). Prolonged hot, dry conditions affect European crop prices. Retrieved from https://climate.nasa.gov/news/2806/prolonged-hot-dry-conditions-affect ‐european‐crop‐prices/.
Porth,, L., & Tan,, K. S. (2015). Agricultural insurance—More room to grow? The Actuary Magazine, 12(2 ), 35–41.
Porth,, L., Tan,, K. S., & Zhu,, W. (2016). Farm‐level crop yield forecasting in the absence of farm‐level data (Tech. Rep.). Schaumburg, IL: Society of Actuaries. Retrieved from https://www.soa.org/Files/Research/Projects/research-2016 ‐farm‐level‐forecasting.pdf.
Pres,, J. (2009). Measuring non‐catastrophic weather risks for businesses. The Geneva Papers on Risk and Insurance, 34(3 ), 425–439. https://doi.org/10.1057/gpp.2009.16
Scheel,, I., Ferkingstad,, E., Frigessi,, A., Haug,, O., Hinnerichsen,, M., & Meze‐Hausken,, E. (2013). A Bayesian hierarchical model with spatial variable selection: The effect of weather on insurance claims. Journal of the Royal Statistical Society: Series C (Applied Statistics), 62(1 ), 85–100. https://doi.org/10.1111/j.1467-9876.2012.01039.x
Scheel,, I., & Hinnerichsen,, M. (2012). The impact of climate change on precipitation‐related insurance risk: A study of the effect of future scenarios on residential buildings in Norway. The Geneva Papers on Risk and Insurance, 37(2 ), 365–376. https://doi.org/10.1057/gpp.2012.7
Shiraishi,, H. (2016). Review of statistical actuarial risk modelling. Cogent Mathematics, 3, 1123945. https://doi.org/10.1080/23311835.2015.1123945
Smith,, A. B., & Katz,, R. W. (2013). US billion‐dollar weather and climate disasters: Data sources, trends, accuracy and biases. Natural Hazards, 67(2 ), 387–410.
Smith,, A. B., & Matthews,, J. L. (2015). Quantifying uncertainty and variable sensitivity within the US billion‐dollar weather and climate disaster cost estimates. Natural Hazards, 77(3 ), 1829–1851. https://doi.org/10.1007/s11069-015-1678-x
Smith,, V. H., & Glauber,, J. W. (2012). Agricultural insurance in developed countries: Where have we been and where are we going? Applied Economic Perspectives and Policy, 34(3 ), 363–390. https://doi.org/10.1093/aepp/pps029
Soliman,, M., Lyubchich,, V., Gel,, Y. R., Naser,, D., & Esterby,, S. (2015). Evaluating the impact of climate change on dynamics of house insurance claims. In V. Lakshmanan,, E. Gilleland,, A. McGovern,, & M. Tingley, (Eds.), Machine learning and data mining approaches to climate science (pp. 175–183). Switzerland: Springer . https://doi.org/10.1007/978-3-319-17220-016
Spekkers,, M. H., Clemens,, F. H. L. R., & ten Veldhuis,, J. A. E. (2015). On the occurrence of rainstorm damage based on home insurance and weather data. Natural Hazards and Earth System Sciences, 15(2 ), 261–272. https://doi.org/10.5194/nhess-15-261-2015
Spekkers,, M. H., Kok,, M., Clemens,, F. H. L. R., & ten Veldhuis,, J. A. E. (2013). A statistical analysis of insurance damage claims related to rainfall extremes. Hydrology and Earth System Sciences, 17(3 ), 913–922. https://doi.org/10.5194/hess-17-913-2013
Spekkers,, M. H., Kok,, M., Clemens,, F. H. L. R., & ten Veldhuis,, J. A. E. (2014). Decision‐tree analysis of factors influencing rainfall‐related building structure and content damage. Natural Hazards and Earth System Sciences, 14(9 ), 2531–2547. https://doi.org/10.5194/nhess-14-2531-2014
Stasinopoulos,, D. M., & Rigby,, R. A. (2007). Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7 ), 1–46.
Stulec,, I. (2017). Effectiveness of weather derivatives as a risk management tool in food retail: The case of Croatia. International Journal of Financial Studies, 5, 1–15. https://doi.org/10.3390/ijfs5010002
Tack,, J. B., & Ubilava,, D. (2015). Climate and agricultural risk: Measuring the effect of ENSO on US crop insurance. Agricultural Economics, 46(2 ), 245–257. https://doi.org/10.1111/agec.12154
Toeglhofer,, C., Mestel,, R., & Prettenthaler,, F. (2012). Weather value at risk: On the measurement of noncatastrophic weather risk. Weather, Climate, and Society, 4(3 ), 190–199. https://doi.org/10.1175/WCAS-D-11-00062.1
Wood,, S. N. (2006). Generalized additive models: An introduction with R. New York, NY: Chapman and Hall/CRC .
Woodward,, J. D. (2016). Integrating high resolution soil data into federal crop insurance policy: Implications for policy and conservation. Environmental Science %26 Policy, 66, 93–100. https://doi.org/10.1016/j.envsci.2016.08.011
Zuur,, A., Ieno,, E. N., Walker,, N. J., Saveliev,, A. A., & Smith,, G. M. (2009). Mixed effects models and extensions in ecology with R. New York, NY: Springer . https://doi.org/10.1007/978-0-387-87458-6