Agresti,, A. (2007). An introduction to categorical data analysis. New York, NY: Wiley.
Andersson,, C. A., & Bro,, R. (1998). Improving the speed of multi‐way algorithms: Part I. Tucker 3. Chemometrics and Intelligent Laboratory Systems, 42, 93–103.
Aşsan,, Z., & Greenacre,, M. (2011). Biplots of fuzzy coded data. Fuzzy Sets and Systems, 183, 57–71.
Bacher,, J. (1995). Goodness‐of‐fit measures for multiple correspondence analysis. Quality %26 Quantity, 29, 1–16.
Beh,, E. J. (1997). Simple correspondence analysis of ordinal cross‐classifications using orthogonal polynomials. Biometrical Journal, 39, 589–613.
Beh,, E. J., & Lombardo,, R. (2014). Correspondence analysis: Theory, practice and new strategies. Chichester, England: Wiley.
Benzécri,, J. P. (1979). Sur le calcul des taux d`inertie dans l`analyse d`un questionnaire. Les Cahiers de l`Analyse Des Données, 4, 377–378.
Boik,, R. J. (1996). An efficient algorithm for joint correspondence analysis. Psychometrika, 61, 255–269.
Bordet,, J. P. (1973). Etudes de données geophysiques. (Thèse de 3ème Cycle). Université de Paris VI.
Camiz,, S., & Gomes,, G. C. (2013). Joint correspondence analysis versus multiple correspondence analysis: A solution to an undetected problem. In A. Giusti,, G. Ritter,, & M. Vichi, (Eds.), Classification and data mining, studies in classification, data analysis, and knowledge organization (pp. 11–18). Berlin, Germany: Springer.
Camiz,, S., & Gomes,, G. C. (2016). Alternative methods to multiple correspondence analysis in reconstructing the relevant information in a Burt`s matrix. Pesquisa Operacional, 36, 23–44.
Carlier,, A., & Kroonenberg,, P. M. (1996). Decomposition and biplots in three‐way correspondence analysis. Psychometrika, 61, 355–373.
Carroll,, J. D., & Chang,, J. J. (1970). Analysis of individual differences in multi‐dimensional scaling via an n‐way generalisation of “Eckart – Young” decomposition. Psychometrika, 35, 283–319.
Choulakian,, V. (1988a). Analyse factorielle des correspondences de tableaux multiples. Revue de Statistique Appliquée, 36(4), 33–41.
Choulakian,, V. (1988b). Exploratory analysis of contingency tables by loglinear formulations and generalizations of correspondence analysis. Psychometrika, 53, 235–250.
Choulakian,, V. (2008). Multiple taxicab correspondence analysis. Advances in Data Analysis and Classification, 2, 177–206.
Faber,, N. M., Bro,, R., & Hopke,, P. K. (2003). Recent developments in CANDE‐ COMP/PARAFAC algorithms: A critical review. Chemometrics and Intelligent Laboratory Systems, 65, 119–137.
Gallego,, F. J. (1982). Codage flou en analyse des correspondances. Les Cahiers de l`Analyse Des Données, 7, 413–430.
Gallo,, M. (2015). Tucker3 model for compositional data. Communications in Statistics ‐ Theory and Methods, 44, 4441–4453.
Gower,, J. C. (1990). Fisher`s optimal scores and multiple correspondence analysis. Biometrics, 46, 947–961.
Gower,, J. C., Lubbe,, S., & leRoux,, N. (2011). Understanding biplots. Chichester, UK: Wiley.
Gray,, L. N., & Williams,, J. S. (1981). Goodman and Kruskal τb multiple and partial analogs. Proceedings of the Social Statistics Section, 10, 50–62.
Greenacre,, M. J. (1984). Theory and application of correspondence analysis. London, England: Academic Press.
Greenacre,, M. J. (1988). Correspondence analysis of multivariate categorical data by weighted least‐squares. Biometrika, 75, 457–467.
Greenacre,, M. J. (1990). Some limitations of correspondence analysis. Computational Statistics Quarterly, 3, 249–256.
Greenacre,, M. J. (1991). Interpreting multiple correspondence analysis. Applied Stochastic Models and Data Analysis, 7, 195–210.
Greenacre,, M. J. (2007). Correspondence analysis in practice (2nd ed.). Boca Raton, FL: Chapman %26 Hall/CRC.
Greenacre,, M. J. (2016). Correspondence analysis in practice (3rd ed.). Boca Raton, FL: Chapman %26 Hall/CRC.
Greenacre,, M. J., & Blasius,, J. (2006). Multiple correspondence analysis and related methods. London, England: Chapman %26 Hall/CRC.
Harshman,, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1–84.
Harshman,, R. A. (1972). Determination and proof of minimum conditions for PARAFAC1. UCLA Working Papers in Phonetics, 22, 111–117.
Harshman,, R. A., & Lundy,, M. E. (1984). The PARAFAC model for three‐way factor analysis and multidimensional scaling. In J. A. Hattie,, H. G. Law,, C. W. Wnyder,, & R. P. McDonald, (Eds.), Research methods for multimode data analysis (pp. 122–215). New York, NY: Praeger Scientific.
Hitchcock,, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal of Mathematical Physics, 6, 164–189.
Husson,, F., & Josse,, J. (2014). Multiple correspondence analysis. In J. Blasius, & M. Greenacre, (Eds.), Visualization and verbalization of data (pp. 165–183). Boca Raton, FL: CRC Press.
Kao,, C.‐H., Nakano,, J., Shieh,, S.‐H., Tien,, Y.‐J., Wu,, H.‐M., Yang,, C.‐K., & Chen,, C.‐ H. (2014). Exploratory data analysis of interval‐valued symbolic data with matrix visualization. Computational Statistics and Data Analysis, 79, 14–29.
Kiers,, H. A. L. (2000). Towards a standardized notation and terminology in multiway analysis. Chemometrics and Intelligent Laboratory Systems, 14, 105–122.
Kiers,, H. A. L., & Harshman,, R. A. (1997). Relating two proposed methods for speedup of algorithms for fitting two‐ and three‐way principal component and related multilinear models. Chemometrics and Intelligent Laboratory Systems, 36, 31–40.
Konig,, R. P. (2010). Changing social categories in a changing society: Studying trends with correspondence analysis. Quality %26 Quantity, 44, 409–425.
Kroonenberg,, P. M. (1989). Singular value decompositions of interactions in three‐way contingency tables. In R. Coppi, & S. Bolasco, (Eds.), Multiway data analysis (pp. 169–184). Amsterdam, The Netherlands: Elsevier.
Kroonenberg,, P. M. (1992). Three‐mode component models: A survey of the literature. Statistica %26 Applicata, 4, 619–633.
Kroonenberg,, P. M. (2008). Applied multiway data analysis. Hoboken, New Jersey: Wiley.
Kroonenberg,, P. M. (2014). History of multiway component analysis and three‐way correspondence analysis. In J. Blasius, & M. Greenacre, (Eds.), Visualization and verbalization of data (pp. 77–93). London, England: CRC Press.
Kroonenberg,, P. M., & deLeeuw,, J. (1980). Principal components analysis of three‐mode data by means of alternating least squares algorithms. Psychometrika, 45, 69–97.
Kruskal,, J. B. (1977). Three‐way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95–138.
Le Foll,, Y. (1979). Sur les propriétés de l`analyse des correspondences pour diverses formes completes de données. (Thése de 3éme Cycle). Université de Paris VI.
Lombardo,, R. (2011). Three‐way association measure decompositions: The Delta index. Journal of Statistical Planning and Inference, 141, 1789–1799.
Lombardo,, R., & Beh,, E. J. (2010). Simple and multiple correspondence analysis using orthogonal polynomials. Journal of Applied Statistics, 37, 2101–2116.
Lombardo,, R., & Beh,, E. J. (2017). Three‐way correspondence analysis for ordinal‐nominal variables. In A. Petrucci, & R. Verde, (Eds.), Proceedings of the conference of the Italian statistical society (pp. 613–620). Florence, Italy: Firenze University Press.
Lombardo,, R., Beh,, E. J., & D`Ambra,, L. (2007). Non‐symmetric correspondence analysis with ordinal variables using orthogonal polynomials. Computational Statistics and Data Analysis, 52, 566–577.
Lombardo,, R., Beh,, E. J., & Guerrero,, L. (2013). Non‐symmetric three‐way correspondence analysis to analyse text data in a food context. In E. Bretani, & M. Carpita, (Eds.), Advances on latent variables ‐ Methods, models and applications (p. 6 pp. Milan, Italy: Vita e Pensiero Publishers.
Lombardo,, R., Beh,, E. J., & Guerrero,, L. (2018). Analysis of three‐way asymmetric association of food concepts in cross‐cultural marketing. Quality %26 Quantity, 1–15. https://doi.org/10.1007/s11135-018-0733-6
Lombardo,, R., Beh,, E. J., & Kroonenberg,, P. M. (2016). Modelling trends in ordered correspondence analysis using orthogonal polynomials. Psychometrika, 81, 325–349.
Lombardo,, R., Carlier,, A., & D`Ambra,, L. (1996). Nonsymmetric correspondence analysis for three‐way contingency tables. Methodologica, 4, 59–80.
Lombardo,, R., & Meulman,, J. (2010). Multiple correspondence analysis via polynomial transformations of ordered categorical variables. Journal of Classification, 27, 191–216.
Marcotorchino,, F. (1985). Utilisation des comparaisons par paires en statistique des contingencies: Partie III (Report No. F ‐ 081). Etude du Centre Scientifique, IBM, France, 39 pp.
Markos,, A., Menexes,, G., & Papadimitriou,, T. (2009). Multiple correspondence analysis for "tall" data sets. Intelligent Data Analysis, 13, 873–885.
Nishisato,, S., & Lawrence,, D. R. (1989). Dual scaling of multiway data matrices: Several variants. In R. Coppi, & S. Bolasco, (Eds.), Multiway data analysis (pp. 317–326). Amsterdam, The Netherlands: Elsevier.
Paatero,, P., & Andersson,, C. A. (1999). Further improvements of the speed of the Tucker3 three‐way algorithm. Chemometrics and Intelligent Laboratory Systems, 47, 17–20.
Pinti,, A., Rambaud,, F., Griffon,, J.‐L., Ahmed,, A., & Taleb,. (2010). A tool developed in matlab for multiple correspondence analysis of fuzzy coded data sets: Application to morphometric skull data. Computer Methods and Programs in Biomedicine, 98, 66–75.
Rhodes,, J. A. (2010). A concise proof of Kruskal`s theorem on tensor decomposition. Linear Algebra and its Applications, 432, 1818–1824.
Rodríguez,, O. (2007). Correspondence analysis for symbolic multi‐valued variables. Retrieved from: www.oldemarrodriguez.com/yahoo_site_admin/assets/docs/SymCA_CARME2007.229151706.pdf.
Rodriguez,, O. (2018). RSDA: R to symbolic data analysis. (R version 2.0.5). Retrieved from: https://cran.r-project.org/web/packages/RSDA/index.html.
Stegeman,, A., & Sidiropoulos,, N. D. (2007). On Kruskal`s uniqueness condition for the CANDECOMP/PARAFAC decomposition. Linear Algebra and its Applications, 420, 540–552.
Takagi,, I., & Yadohisa,, H. (2011). Correspondence analysis for symbolic contingency tables based on interval algebra. Procedia Computer Science, 6, 352–357.
Tateneni,, K., & Browne,, M. W. (2000). A noniterative method of joint correspondence analysis. Psychometrika, 65, 157–165.
tenBerge,, J. M. F., deLeeuw,, J., & Kroonenberg,, P. M. (1987). Some additional results on principal components analysis of three‐mode data by means of alternating least squares. Psychometrika, 52, 183–191.
tenBerge,, J. M. F., & Sidiropoulos,, N. D. (2002). On uniqueness in CANDE‐COMP/PARAFAC. Psychometrika, 67, 399–409.
Tenenhaus,, M., & Young,, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika, 50, 91–119.
Theodorou,, Y., Drossos,, C., & Alevizos,, P. (2007). Correspondence analysis with fuzzy data: The fuzzy eigenvalue problem. Fuzzy Sets and Systems, 158, 704–721.
Tomasi,, G., & Bro,, R. (2006). A comparison of algorithms for fitting the PARAFAC model. Computational Statistics %26 Data Analysis, 50, 1700–1734.
Tucker,, L. R. (1963). Implications of factor analysis of three‐way matrices for measurement of change. In C. W. Harris, (Ed.), Problems in measuring change (pp. 122–137). Madison, WI: The University of Wisconsin Press.
Tucker,, L. R. (1964). The extension of factor analysis to three‐dimensional matrices. In N. Frederiksen, & H. Gulliksen, (Eds.), Contributions to mathematical psychology (pp. 109–127). Canada: Holt, Rinehart %26 Winston.
van derHeijden,, P., deFalguerolles,, A., & deLeeuw,, J. (1989). A combined approach to contingency table analysis using correspondence analysis and log‐linear analysis. Journal of the Royal Statistical Society. Series C (Applied Statistics), 38, 249–292.
van derHeijden,, P., & deLeeuw,, J. (1985). Correspondence analysis used complementary to loglinear analysis. Psychometrika, 50, 429–447.
vanHerk,, H., & van deVelden,, M. (2007). Insight into the relative merits of rating and ranking in a cross‐national context using three‐way correspondence analysis. Food Quality and Preference, 18, 1096–1105.
vanRijckevorsel,, J. L. A. (1988). Fuzzy coding and B‐splines. In J. L. A.vanRijckevorsel, & J.deLeeuw, (Eds.), Component and correspondence analysis (pp. 33–54). Chichester, England: Wiley.
Vermunt,, J. K., & Anderson,, C. J. (2005). Joint correspondence analysis (JCA) by maximum likelihood. Methodology, 1, 18–26.
Weller,, S. C., & Romney,, A. K. (1990). Metric scaling: Correspondence analysis. Sage University paper series on quantitative applications in the social sciences 07‐075. Newbury Park, CA: Sage.
Yoshizawa,, T. (1975). Models for quantification techniques in multiple contingency tables: The theoretical approach (in Japanese). Kodo Ke Ryugaku [Japanese Journal of Behavior Metrics], 3, 1–11.
Yoshizawa,, T. (1976). A generalized definition of interactions and singular value decomposition of multiway arrays (in Japanese). Kodo Ke Ryugaku [Japanese Journal of Behavior Metrics], 4, 32–42.