Cook,, R. D. (1998). Regression graphics. New York, NY: Wiley.
Cook,, R. D. (2007). Fisher lecture: Dimension reduction in regression. Statistical Science, 22(1), 1–26. Retrieved from https://projecteuclid.org/euclid.ss/1185975631. https://doi.org/10.1214/088342306000000682
Cook,, R. D. (2018). An introduction to envelopes. Hoboken, NJ: Wiley.
Cook,, R. D., & Forzani,, L. (2017). Big data and partial least squares prediction. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, to appear, 46, 62–78. https://doi.org/10.1002/cjs.11316
Cook,, R. D., & Forzani,, L. (2019). Partial least squares prediction in high‐dimensional regression. The Annals of Statistics, 47(2), 884–908.
Cook,, R. D., Forzani,, L., & Su,, Z. (2016). A note on fast envelope estimation. Journal of Multivariate Analysis, 150, 42–54. https://doi.org/10.1016/j.jmva.2016.05.006
Cook,, R. D., Forzani,, L., & Zhang,, X. (2015). Envelopes and reduced‐rank regression. Biometrika, 102(2), 439–456. https://doi.org/10.1093/biomet/asv001
Cook,, R. D., Helland,, I. S., & Su,, Z. (2013). Envelopes and partial least squares regression. Journal of the Royal Statistical Society B, 75(5), 851–877. https://doi.org/10.1111/rssb.12018
Cook,, R. D., Li,, B., & Chiaromonte,, F. (2007). Dimension reduction in regression without matrix inversion. Biometrika, 94(3), 569–584. https://doi.org/10.1093/biomet/92.4.937
Cook,, R. D., Li,, B., & Chiaromonte,, F. (2010). Envelope models for parsimonious and efficient multivariate linear regression. Statistica Sinica, 20(3), 927–960.
Cook,, R. D., & Su,, Z. (2013). Scaled envelopes: Scale‐invariant and efficient estimation in multivariate linear regression. Biometrika, 100(4), 939–954. https://doi.org/10.1093/biomet/ast026
Cook,, R. D., & Su,, Z. (2016). Scaled predictor envelopes and partial least‐squares regression. Technometrics, 58(2), 155–165. https://doi.org/10.1080/00401706.2015.1017611
Cook,, R. D., & Zhang,, X. (2015a). Foundations for envelope models and methods. Journal of the American Statistical Association, 110(510), 599–611. https://doi.org/10.1080/01621459.2014.983235
Cook,, R. D., & Zhang,, X. (2015b). Simultaneous envelopes for multivariate linear regression. Technometrics, 57(1), 11–25. https://doi.org/10.1080/00401706.2013.872700
Cook,, R. D., & Zhang,, X. (2016). Algorithms for envelope estimation. Journal of Computational and Graphical Statistics, 25(1), 284–300. https://doi.org/10.1080/10618600.2015.1029577
Cook,, R. D., & Zhang,, X. (2018). Fast envelope algorithms. Statistica Sinica, 28, 1179–1197. https://doi.org/10.5705/ss.202016.0037
Cox,, D. R., & Mayo,, D. G. (2010). II Objectivity and conditionality in frequentist inference. In D. G. Mayo, & A. Spanos, (Eds.), Error and inference: Recent exchanges on experimental reasoning, reliability, and the objectivity and rationality of science (pp. 276–304). Cambridge, England: Cambridge University Press.
de Jong,, S. (1993). SIMPLS: An alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18(3), 251–263. https://doi.org/10.1016/0169-7439(93)85002-X
Ding,, S., & Cook,, R. D. (2018). Matrix‐variate regressions and envelope models. Journal of the Royal Statistical Society B, 80, 387–408. https://doi.org/10.1111/rssb.12247
Ding,, S., Su,, Z., Zhu,, G., & Wang,, L. (2019). Envelope quantile regression. Statistica Sinica. Retrieved from http://www3.stat.sinica.edu.tw/ss_newpaper/SS-2018-0060_na.pdf
Eck,, D. J., & Cook,, R. D. (2017). Weighted envelope estimation to handle variability in model selection. Biometrica, 104(3), 743–749. https://doi.org/10.1093/biomet/asx035
Fisher,, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 222(594–604), 309–368. Retrieved from http://rsta.royalsocietypublishing.org/content/222/594-604/309. https://doi.org/10.1098/rsta.1922.0009
Khare,, K., Pal,, S., & Su,, Z. (2016). A Bayesian approach for envelope models. Annals of Statistics, 45(1), 196–222. Retrieved from http://projecteuclid.org/euclid.aos/1487667621. https://doi.org/10.1214/16-AOS1449
Li,, B. (2018). Sufficient dimension reduction: Methods and applications with r. New York, NY: Chapman and Hall/CRC Press.
Li,, G., Yang,, D., Nobel,, A. B., & Shen,, H. (2015). Supervised singular value decomposition and its asymptotic properties. Journal of Multivariate Analysis, 146, 7–17. Retrieved from. https://doi.org/10.1016/j.jmva.2015.02.016
Li,, L., & Zhang,, X. (2017). Parsimonious tensor response regression. Journal of the American Statistical Association, 112(519), 1131–1146. https://doi.org/10.1080/01621459.2016.1193022
Park,, Y., Su,, Z., & Zhu,, H. (2017). Groupwise envelope models for imaging genetic analysis. Biometrics, 73(4), 1243–1253. https://doi.org/10.1111/biom.12689
Reinsel,, G. C., & Velu,, R. P. (1998). Multivariate reduced‐rank regression: Theory and applications. New York, NY: Springer.
Rekabdarkolaee,, H. M., Wang,, Q., Naji,, Z., & Fluentes,, M. (2017). New parsimonious multivariate spatial model: Spatial envelope. Statistica Sinica Retrieved from http://www3.stat.sinica.edu.tw/ss_newpaper/SS-2017-0455_na.pdf
Rimal,, R., Almoy,, T., & Saebo,, S. (2019, March). Comparison of multi‐response prediction methods. (arXiv:1903.08426v1)
Su,, Z., & Cook,, R. D. (2011). Partial envelopes for efficient estimation in multivariate linear regression. Biometrika, 98(1), 133–146. https://doi.org/10.1093/biomet/asq063
Su,, Z., & Cook,, R. D. (2012). Inner envelopes: Efficient estimation in multivariate linear regression. Biometrika, 99(3), 687–702. https://doi.org/10.1093/biomet/ass024
Su,, Z., & Cook,, R. D. (2013). Estimation of multivariate means with heteroscedastic errors using envelope models. Statistica Sinica, 23(1), 213–230. https://doi.org/10.5705/ss.2010.240
Su,, Z., Zhu,, G., Chen,, X., & Yang,, Y. (2016). Sparse envelope model: Estimation and response variable selection in multivariate linear regression. Biometrika, 103(3), 579–593. https://doi.org/10.1093/biomet/asw036
Zhang,, X., & Li,, L. (2017). Tensor envelope partial least‐squares regression. Technometrics, 59(4), 426–436. https://doi.org/10.1080/00401706.2016.1272495
Zhang,, X., & Mai,, Q. (2018). Model‐free envelope dimension selection. Electronic Journal of Statistics, 12(2), 2193–2216. Retrieved from https://projecteuclid.org/euclid.ejs/1531814505 (https://arxiv.org/abs/1709.03945). https://doi.org/10.1214/18-EJS1449
Zhang,, X., & Mai,, Q. (2019). Efficient integration of sufficient dimension reduction and prediction in discriminant analysis. Technometrics, 61(2), 259–272.
Zhu,, G., & Su,, Z. (2019). Envelope‐based sparse partial least squares. Annals of Statistics, 47, To appear. https://doi.org/10.1080/00401706.2016.1272495