Alexandrov,, T. (2009). A method of trend extraction using singular spectrum analysis. RevStat, 7(1), 1–22.
Alexandrov,, T., & Golyandina,, N. (2005). Automatic extraction and forecast of time series cyclic components within the framework of SSA. In Proceedings of the 5th St. Petersburg Workshop on Simulation (pp. 45–50). St. Petersburg: St. Petersburg State University.
Allen,, M. R., & Robertson,, A. W. (1996). Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12(11), 775–784.
Allen,, M. R., & Smith,, L. A. (1996). Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. Journal of Climate, 9(12), 3373–3404.
Badeau,, R., David,, B., & Richard,, G. (2008). Cramér–Rao bounds for multiple poles and coefficients of quasi‐polynomials in colored noise. IEEE Transactions on Signal Processing, 56(8–1), 3458–3467. https://doi.org/10.1109/TSP.2008.921719
Badeau,, R., Richard,, G., & David,, B. (2003). Adaptive ESPRIT algorithm based on the PAST subspace tracker. In In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003 (ICASSP `03) (Vol. 6, p. VI‐229). New York, NY: IEEE. https://doi.org/10.1109/ICASSP.2003.1201660
Badeau,, R., Richard,, G., & David,, B. (2008). Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials. IEEE Transactions on Signal Process., 56(2), 492–504.
Barkhuijsen,, H., de Beer,, R., & van Ormondt,, D. (1987). Improved algorithm for noniterative time‐domain model fitting to exponentially damped magnetic resonance signals. Journal of Magnetic Resonance, 73, 553–557.
Basilevsky,, A., & Hum,, D. P. J. (1979). Karhunen–Loéve analysis of historical time series with an application to plantation births in Jamaica. Journal of the American Statistical Association, 74, 284–290.
Beckers,, J., & Rixen,, M. (2003). EOF calculations and data filling from incomplete oceanographic data sets. Journal of Atmospheric and Oceanic Technology, 20, 1839–1856.
Belonin,, M. D., Golubeva,, V. A., & Skublov,, G. T. (1982). Faktornyj analiz v geologii [Factor analysis in geology]. Moscow: Nedra Retrieved from http://www.geokniga.org/books/4531 (in Russian)
Belonin,, M. D., Tatarinov,, I. V., Kalinin,, O. M., Shimanskij,, V. K., Beskrovnaya,, O. V., & Pohitonova,, T. E. (1971). In A. Margolin, (Ed.), Faktornyj analiz v neftyanoj geologii: Obzor [Factor analysis in petrolium geology: Review]. Moskow: VIEMS (in Russian).
Bozzo,, E., Carniel,, R., & Fasino,, D. (2010). Relationship between singular spectrum analysis and Fourier analysis: Theory and application to the monitoring of volcanic activity. Computers %26 Mathematics with Applications, 60(3), 812–820.
Broomhead,, D., & King,, G. (1986a). Extracting qualitative dynamics from experimental data. Physica D, 20, 217–236.
Broomhead,, D., & King,, G. (1986b). On the qualitative analysis of experimental dynamical systems. In S. Sarkar, (Ed.), Nonlinear phenomena and chaos (pp. 113–144). Bristol: Adam Hilger.
Buchstaber,, V. (1994). Time series analysis and grassmannians. In S. Gindikin, (Ed.), Applied problems of radon transform (Vol. 162, pp. 1–17). Providence, RI: AMS.
Cadzow,, J. A. (1988). Signal enhancement: a composite property mapping algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(1), 49–62.
Chen,, K., & Sacchi,, M. D. (2014). Robust reduced‐rank filtering for erratic seismic noise attenuationrobust reduced‐rank filtering. Geophysics, 80(1), V1–V11. https://doi.org/10.1190/geo2014-0116.1
Cleveland,, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829–836. https://doi.org/10.1080/01621459.1979.10481038
Colebrook,, J. M. (1978). Continuous plankton records—Zooplankton and environment, northeast Atlantic and North Sea, 1948–1975. Oceanologica Acta, 1, 9–23.
Danilov,, D., & Zhigljavsky,, A. (Eds.). (1997). Glavnye komponenty vremennyh ryadov: metod ‘Gusenica’ [principal components of time series: the ‘Caterpillar’ method]. St. Petersburg: St. Petersburg University Press Retrieved from http://www.gistatgroup.com/gus/book1/index.html (in Russian)
De Klerk,, J. (2015a). A comparison of singular spectrum analysis forecasting methods to forecast South African tourism arrivals data. Studies in Economics and Econometrics, 39(2), 21–40.
De Klerk,, J. (2015b). Time series outlier detection using the trajectory matrix in singular spectrum analysis with outlier maps and ROBPCA. South African Statistical Journal, 49(1), 61–76.
de Prony,, G. (1795). Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l`eau et la vapeur de l`alkool à différentes températures. Journal de l`École polytechnique, 1(2), 24–76.
Eckart,, C., & Young,, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1(3), 211–218. https://doi.org/10.1007/BF02288367
Efimov,, V., & Galaktionov,, Y. (1983). About possibility of forecasting of cyclic variability for mammal abundance. Journal of General Biology, 44(3), 343–352 (in Russian).
Elsner,, J. B., & Tsonis,, A. A. (1996). Singular spectrum analysis: A new tool in time series analysis. New York, NY: Plenum.
Fraedrich,, K. (1986). Estimating dimensions of weather and climate attractors. Journal of the Atmospheric Sciences, 43, 419–432.
Gantmacher,, F. R. (1959). The theory of matrices (Vol. 68). New York, NY: Chelsea Publishing Company.
Garnot,, V. S. F., Groth,, A., & Ghil,, M. (2018). Coupled climate‐economic modes in the Sahel`s interannual variability. Ecological Economics, 153, 111–123. https://doi.org/10.1016/j.ecolecon.2018.07.006
Ghil,, M., & Vautard,, R. (1991). Interdecadal oscillations and the warming trend in global temperature time series. Nature, 350, 324–327.
Golyandina,, N. (2010). On the choice of parameters in singular spectrum analysis and related subspace‐based methods. Statistics and Its Interface, 3(3), 259–279.
Golyandina,, N. (2019). Statistical approach to detection of signals by Monte Carlo singular spectrum analysis: Multiple testing. arXiv:1903.01485. Retrieved from https://arxiv.org/abs/1903.01485
Golyandina,, N., Korobeynikov,, A., Shlemov,, A., & Usevich,, K. (2015). Multivariate and 2D extensions of singular spectrum analysis with the Rssa package. Journal of Statistical Software, 67(2), 1–78.
Golyandina,, N., Korobeynikov,, A., & Zhigljavsky,, A. (2018). Singular spectrum analysis with R. Berlin, Heidelberg: Springer‐Verlag.
Golyandina,, N., & Lomtev,, M. (2016). Improvement of separability of time series in singular spectrum analysis using the method of independent component analysis. Vestnik St. Petersburg University. Mathematics, 49(1), 9–17.
Golyandina,, N., Nekrutkin,, V., & Zhigljavsky,, A. (2001). Analysis of time series structure: SSA and related techniques. New York, NY: Chapman %26 Hall/CRC Press.
Golyandina,, N., & Osipov,, E. (2007). The “Caterpillar”‐SSA method for analysis of time series with missing values. Journal of Statistical Planning and Inference, 137(8), 2642–2653.
Golyandina,, N., & Shlemov,, A. (2015). Variations of singular spectrum analysis for separability improvement: Non‐orthogonal decompositions of time series. Statistics and Its Interface, 8(3), 277–294.
Golyandina,, N., & Shlemov,, A. (2017). Semi‐nonparametric singular spectrum analysis with projection. Statistics and Its Interface, 10(1), 47–57.
Golyandina,, N., & Usevich,, K. (2010). 2D‐extension of singular spectrum analysis: algorithm and elements of theory. In V. Olshevsky, & E. Tyrtyshnikov, (Eds.), Matrix methods: Theory, algorithms and applications (pp. 449–473). Singapore: World Scientific Publishing.
Golyandina,, N., & Zhigljavsky,, A. (2013). Singular spectrum analysis for time series. Berlin: Springer.
Greco,, G., Rosa,, R., Beskin,, G., Karpov,, S., Romano,, L., Guarnieri,, A., … Bedogni,, R. (2011). Evidence of deterministic components in the apparent randomness of GRBs: clues of a chaotic dynamic. Scientific Reports, 1, 91.
Grenander,, U., & Szegö,, G. (1984). Toeplitz forms and their applications. New York, NY: Chelsea.
Groth,, A., & Ghil,, M. (2011, Sep). Multivariate singular spectrum analysis and the road to phase synchronization. Physical Review E, 84, 036206. https://doi.org/10.1103/PhysRevE.84.036206
Groth,, A., & Ghil,, M. (2015). Monte Carlo singular spectrum analysis (SSA) revisited: Detecting oscillator clusters in multivariate datasets. Journal of Climate, 28(19), 7873–7893. https://doi.org/10.1175/JCLI-D-15-0100.1
Hall,, M. J. (1998). Combinatorial theory. New York, NY: Wiley.
Hansen,, P. C., & Jensen,, S. H. (1998, June). FIR filter representations of reduced‐rank noise reduction. IEEE Transactions on Signal Processing, 46, 1737–1741.
Harris,, T., & Yan,, H. (2010). Filtering and frequency interpretations of singular spectrum analysis. Physica D, 239, 1958–1967.
Hassani,, H., Heravi,, S., & Zhigljavsky,, A. (2009). Forecasting European industrial production with singular spectrum analysis. International Journal of Forecasting, 25(1), 103–118.
Hassani,, H., & Thomakos,, D. (2010). A review on singular spectrum analysis for economic and financial time series. Statistics and Its Interface, 3(3), 377–397.
Hassani,, H., Xu,, Z., & Zhigljavsky,, A. (2011). Singular spectrum analysis based on the perturbation theory. Nonlinear Analysis: Real World Applications, 12(5), 2752–2766. https://doi.org/10.1016/j.nonrwa.2011.03.020
Holland,, P. W., & Welsch,, R. E. (1977). Robust regression using iteratively reweighted least‐squares. Communications in Statistics—Theory and Methods, 6(9), 813–827. https://doi.org/10.1080/03610927708827533
Holmström,, L., & Launonen,, I. (2013, October). Posterior singular spectrum analysis. Statistical Analysis and Data Mining, 6(5), 387–402. https://doi.org/10.1002/sam.11195
Hua,, Y. (1992). Estimating two‐dimensional frequencies by matrix enhancement and matrix pencil. IEEE Transactions on Signal Processing, 40(9), 2267–2280.
Huang,, N. E., & Wu,, Z. (2008). A review on Hilbert–Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46, RG2006. https://doi.org/10.1029/2007RG000228
Ivanova,, E., & Nekrutkin,, V. (2019). Two asymptotic approaches for the exponential signal and harmonic noise in singular spectrum analysis. Statistics and Its Interface, 12(1), 49–59.
Jemwa,, G. T., & Aldrich,, C. (2006). Classification of process dynamics with Monte Carlo singular spectrum analysis. Computers %26 Chemical Engineering, 30(5), 816–831. https://doi.org/10.1016/j.compchemeng.2005.12.005
Kalantari,, M., Yarmohammadi,, M., & Hassani,, H. (2016). Singular spectrum analysis based on L1‐norm. Fluctuation and Noise Letters, 15(01), 1650009.
Kato,, M., Yen‐Wei Chen,, & Gang Xu,. (2006). Articulated hand tracking by PCA‐ICA approach. In 7th International Conference on Automatic Face and Gesture Recognition (FGR06) (pp. 329–334). doi: https://doi.org/10.1109/FGR.2006.21
Keppenne,, C., & Ghil,, M. (1992). Adaptive filtering and prediction of the southern oscillation index. Journal of Geophysical Research: Atmospheres, 97(D18), 20449–20454.
Keppenne,, C., & Lall,, U. (1996). Complex singular spectrum analysis and multivariate adaptive regression splines applied to forecasting the southern oscillation. Experimental Long‐Lead Forecast Bulletin. https://www.cpc.ncep.noaa.gov/products/predictions/experimental/bulletin/Mar96/article13.html
Khan,, M. A. R., & Poskitt,, D. S. (2013). A note on window length selection in singular spectrum analysis. Australian %26 New Zealand Journal of Statistics, 55(2), 87–108. https://doi.org/10.1111/anzs.12027
Kondrashov,, D., & Ghil,, M. (2006). Spatio‐temporal filling of missing points in geophysical data sets. Nonlinear Processes in Geophysics, 13(2), 151–159.
Korobeynikov,, A. (2010). Computation‐ and space‐efficient implementation of SSA. Statistics and Its Interface, 3(3), 357–368.
Korobeynikov,, A., Shlemov,, A., Usevich,, K., & Golyandina,, N. (2017). Rssa: A collection of methods for singular spectrum analysis. R package version 1.0 [Computer software manual]. Retrieved from http://CRAN.R-project.org/package=Rssa
Kouchaki,, S., Sanei,, S., Arbon,, E. L., & Dijk,, D. (2015, Jan). Tensor based singular spectrum analysis for automatic scoring of sleep EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(1), 1–9. https://doi.org/10.1109/TNSRE.2014.2329557
Kumaresan,, R., & Tufts,, D. (1982). Estimating the parameters of exponentially damped sinusoids and pole‐zero modeling in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30(6), 833–840.
Kundu,, S., Markopoulos,, P. P., & Pados,, D. A. (2014). Fast computation of the L1‐principal component of real‐valued data. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8028–8032). New York, NY: IEEE. https://doi.org/10.1109/ICASSP.2014.6855164
Launonen,, I., & Holmström,, L. (2017). Multivariate posterior singular spectrum analysis. Statistical Methods %26 Applications, 26(3), 361–382. https://doi.org/10.1007/s10260-016-0371-x
Leles,, M. C. R., Sansao,, J. P. H., Mozelli,, L. A., & Guimaraes,, H. N. (2018). A new algorithm in singular spectrum analysis framework: The Overlap‐SSA (ov‐SSA). SoftwareX, 8, 26–32. https://doi.org/10.1016/j.softx.2017.11.001
Markopoulos,, P. P., Karystinos,, G. N., & Pados,, D. A. (2014, Oct). Optimal algorithms for L1‐subspace signal processing. IEEE Transactions on Signal Processing, 62(19), 5046–5058. https://doi.org/10.1109/TSP.2014.2338077
Markovsky,, I. (2019). Low rank approximation: Algorithms, implementation, applications (communications and control engineering) (2nd ed.). Berlin: Springer.
Mees,, A. I., Rapp,, P. E., & Jennings,, L. S. (1987, Jul). Singular‐value decomposition and embedding dimension. Physical Review A, 36, 340–346. https://doi.org/10.1103/PhysRevA.36.340
Moskvina,, V., & Zhigljavsky,, A. (2003). An algorithm based on singular spectrum analysis for change‐point detection. Communications in Statistics: Simulation and Computation, 32(2), 319–352.
Nekrutkin,, V. (2010). Perturbation expansions of signal subspaces for long signals. Statistics and Its Interface, 3, 297–319.
Nekrutkin,, V., & Vasilinetc,, I. (2017). Asymptotic extraction of common signal subspaces from perturbed signals. Statistics and Its Interface, 10(1), 27–32.
Oropeza,, V. (2010). The singular spectrum analysis method and its application to seismic data denoising and reconstruction (master thesis). University of Alberta.
Palus,, M., & Novotná,, D. (2004, December). Enhanced Monte Carlo singular system analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlinear Processes in Geophysics, 11(5/6), 721–729.
Papy,, J. M., De Lathauwer,, L., & Van Huffel,, S. (2005). Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case. Numerical Linear Algebra with Applications, 12(8), 809–826.
Pietilä,, A., El‐Segaier,, M., Vigário,, R., & Pesonen,, E. (2006). Blind source separation of cardiac murmurs from heart recordings. In J. Rosca,, D. Erdogmus,, J. C. Príncipe,, & S. Haykin, (Eds.), Independent component analysis and blind signal separation (Vol. 3889, pp. 470–477). Berlin/Heidelberg: Springer.
Plaut,, G., & Vautard,, R. (1994). Spells of low‐frequency oscillations and weather regimes in the northern hemisphere. Journal of the Atmospheric Sciences, 51, 210–236.
Roy,, R., & Kailath,, T. (1989). ESPRIT: estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 984–995.
Sahnoun,, S., Usevich,, K., & Comon,, P. (2017). Multidimensional ESPRIT for damped and undamped signals: Algorithm, computations, and perturbation analysis. IEEE Transactions on Signal Processing, 65(22), 5897–5910.
Sanei,, S., & Hassani,, H. (2015). Singular spectrum analysis of biomedical signals. New York, NY: CRC Press.
Santamaria,, I., Pantaleón,, C., & Ibanez,, J. (2000). A comparative study of high‐accuracy frequency estimation methods. Mechanical Systems and Signal Processing, 14(5), 819–834. https://doi.org/10.1006/mssp.2000.1321
Sauer,, Y., Yorke,, J., & Casdagli,, M. (1991). Embedology. Journal of Statistical Physics, 65, 579–616.
Shlemov,, A., & Golyandina,, N. (2014). Shaped extensions of singular spectrum analysis. In 21st International Symposium on Mathematical Theory of Networks and Systems, July 7–11, 2014. Groningen, The Netherlands (pp. 1813–1820).
Sidiropoulos,, N. D., De Lathauwer,, L., Fu,, X., Huang,, K., Papalexakis,, E. E., & Faloutsos,, C. (2017, July). Tensor decomposition for signal processing and machine learning. IEEE Transactions on Signal Processing, 65(13), 3551–3582. https://doi.org/10.1109/TSP.2017.2690524
Stoica,, P., & Moses,, R. L. (2005). Spectral analysis of signals. Upper Saddle River, NJ: Pearson/Prentice Hall.
Stoica,, P., & Soderstrom,, T. (1991, Aug). Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies. IEEE Transactions on Signal Processing, 39(8), 1836–1847. https://doi.org/10.1109/78.91154
Trickett,, S. (2003). F‐xy eigenimage noise suppression. Geophysics, 68(2), 751–759.
Trickett,, S., Burroughs,, L., & Milton,, A. (2012). Robust rank‐reduction filtering for erratic noise (Tech. Rep.). doi: https://doi.org/10.1190/segam2012-0129.1
Tufts,, D. W., Kumaresan,, R., & Kirsteins,, I. (1982, June). Data adaptive signal estimation by singular value decomposition of a data matrix. Proceedings of the IEEE, 70(6), 684–685.
Usevich,, K., & Markovsky,, I. (2014). Variable projection for affinely structured low‐rank approximation in weighted 2‐norms. Journal of Computational and Applied Mathematics, 272, 430–448.
Van Huffel,, S. (1993). Enhanced resolution based on minimum variance estimation and exponential data modeling. Signal Processing, 33(3), 333–355. https://doi.org/10.1016/0165-1684(93)90130-3
Vautard,, R., & Ghil,, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35, 395–424.
Vautard,, R., Yiou,, P., & Ghil,, M. (1992). Singular‐spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58, 95–126.
Vlassieva,, E., & Golyandina,, N. (2009). First‐order SSA‐errors for long time series: model examples of simple noisy signals. In Proceedings of the 6th St. Petersburg Workshop on Simulation, June 28–July 4, 2009, St. Petersburg (Vol. 1, pp. 314–319). St.‐Petersburg: St.‐Petersburg State University.
Watson,, P. J. (2016). Identifying the best performing time series analytics for sea level research. In I. Rojas, & H. Pomares, (Eds.), Time series analysis and forecasting: Selected contributions from the itise conference (pp. 261–278). Cham: Springer International Publishing.
Weare,, B. C., & Nasstrom,, J. S. (1982). Examples of extended empirical orthogonal function analyses. Monthly Weather Review, 110(6), 481–485.
Yang,, D., Yi,, C., Xu,, Z., Zhang,, Y., Ge,, M., & Liu,, C. (2017). Improved tensor‐based singular spectrum analysis based on single channel blind source separation algorithm and its application to fault diagnosis. Applied Sciences, 7(4), 1–15.
Yiou,, P., Baert,, E., & Loutre,, M. (1996). Spectral analysis of climate data. Surveys in Geophysics, 17, 619–663.
Yiou,, P., Sornette,, D., & Ghil,, M. (2000). Data‐adaptive wavelets and multi‐scale singular‐spectrum analysis. Physica D: Nonlinear Phenomena, 142(3), 254–290. https://doi.org/10.1016/S0167-2789(00)00045-2
Zvonarev,, N., & Golyandina,, N. (2017). Iterative algorithms for weighted and unweighted finite‐rank time‐series approximations. Statistics and Its Interface, 10(1), 5–18.
Zvonarev,, N., & Golyandina,, N. (2018). Modified Gauss–Newton method in low‐rank signal estimation. arXiv:1803.01419. Retrieved from https://arxiv.org/abs/1803.01419