Allison,, P. D. (2014). Event history and survival analysis (2nd ed.). Los Angeles, CA: SAGE Publications.
Andersen,, P. K., Borgan,, O., Gill,, R. D., & Keiding,, N. (Eds.). (1993). Statistical models based on counting processes. New York, NY: Springer.
Austin,, P. C. (2017). A tutorial on multilevel survival analysis: Methods, models and applications. International Statistical Review, 85, 185–203.
Barnett,, A. G., Batra,, R., Graves,, N., Edgeworth,, J., Robotham,, J., & Cooper,, B. (2009). Using a longitudinal model to estimate the effect of methicillin‐resistant Staphylococcus aureus infection on length of stay in an intensive care unit. American Journal of Epidemiology, 170, 1186–1194.
Berger,, M., & Schmid,, M. (2018). Semiparametric regression for discrete time‐to‐event data. Statistical Modelling, 18, 322–345.
Berger,, M. & Schmid,, M. (2020). Assessing the calibration of subdistribution hazard models in discrete time. Technical Report arXiv:2001.11240 [stat.ME].
Berger,, M., Schmid,, M., Welchowski,, T., Schmitz‐Valckenberg,, S., & Beyersmann,, J. (2020). Subdistribution hazard models for competing risks in discrete time. Biostatistics, 21, 449–466.
Berger,, M., Welchowski,, T., Schmitz‐Valckenberg,, S., & Schmid,, M. (2019). A classification tree approach for the modeling of competing risks in discrete time. Advances in Data Analysis and Classification, 13, 965–990.
Beyersmann,, J., Allignol,, A., & Schumacher,, M. (2011). Competing risks and multistate models with R. Heidelberg: Springer.
Beyersmann,, J., & Schrade,, C. (2017). Florence nightingale, William Farr and competing risks. Journal of the Royal Statistical Society, Series A. Statistics in Society, 180, 285–293.
Beyersmann,, J., & Schumacher,, M. (2007). Misspecified regression model for the subdistribution hazard of a competing risk. Statistics in Medicine, 26, 1649–1652.
Bou‐Hamad,, I., Larocque,, D., Ben‐Ameur,, H., Masse,, L., Vitaro,, F., & Tremblay,, R. (2009). Discrete‐time survival trees. The Canadian Journal of Statistics, 37, 17–32.
Box‐Steffensmeier,, J. M., & Jones,, B. S. (2004). Event history modeling. Cambridge, MA: Cambridge University Press.
Chen,, D.‐G., Sun,, J., & Peace,, K. E. (Eds.). (2012). Interval‐censored time‐to‐event data. Boca Raton, FL: Chapman %26 Hall/CRC.
Cortese,, G., & Andersen,, P. K. (2010). Competing risks and time‐dependent covariates. Biometrical Journal, 52, 138–158.
CRASH‐2 Trial Collaborators. (2010). Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH‐2): A randomised, placebo‐controlled trial. The Lancet, 376, 23–32.
Enberg,, J., Gottschalk,, P., & Wolf,, D. (1990). A random‐effects logit model of work‐welfare transitions. Journal of Econometrics, 43, 63–75.
Fahrmeir,, L., & Wagenpfeil,, S. (1996). Smoothing hazard functions and time‐varying effects in discrete duration and competing risks models. Journal of the American Statistical Association, 91, 1584–1594.
Fehring,, R., Schneider,, M., Raviele,, K., Rodriguez,, D., & Pruszynski,, J. (2013). Randomized comparison of two internet‐supported fertility‐awareness‐based methods of family planning. Contraception, 88, 24–30.
Fine,, J. P., & Gray,, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94, 496–509.
Gorgi Zadeh,, S., & Schmid,, M. (2020). Bias in cross‐entropy‐based training of deep survival networks. Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: https://doi.org/10.1109/TPAMI.2020.2979450.
Han,, A., & Hausman,, J. (1990). Flexible parametric estimation of duration and competing risk models. Journal of Applied Econometrics, 5, 1–28.
Hess,, W., & Persson,, M. (2012). The duration of trade revisited—Continuous‐time versus discrete‐time hazards. Empirical Economics, 43, 1083–1107.
Heyard,, R., Timsit,, J.‐F., Essaied,, W., Held,, L., & COMBACTE‐MAGNET Consortium. (2019). Dynamic clinical prediction models for discrete time‐to‐event data with competing risks—A case study on the OUTCOMEREA database. Biometrical Journal, 61, 514–534.
Heyard,, R., Timsit,, J.‐F., Held,, L., & COMBACTE‐MAGNET Consortium. (2020). Validation of discrete time‐to‐event prediction models in the presence of competing risks. Biometrical Journal, 62, 643–657.
Hothorn,, T., Hornik,, K., & Zeileis,, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15, 651–674.
Janitza,, S., & Tutz,, G. (2015). Prediction models for time discrete competing risks. Technical Report 177. Department of Statistics, Ludwig‐Maximilians‐Universität München.
Jóźwiak,, K., & Moerbeek,, M. (2012). Power analysis for trials with discrete‐time survival endpoints. Journal of Educational and Behavioral Statistics, 37, 630–654.
Kalbfleisch,, J. D., & Prentice,, R. L. (2002). The statistical analysis of failure time data (2nd ed.). Hoboken, NJ: Wiley.
Klein,, J. P. (2010). Competing risks. WIREs Computational Statistics, 2, 333–339.
Kleinbaum,, D. G., & Klein,, M. (2012). Survival analysis (3rd ed.). New York, NY: Springer.
Kvamme,, H.,& Borgan,, O. (2019). Continuous and discrete‐time survival prediction with neural networks. Technical Report arXiv:1910.06724 [stat.ML].
Lee,, C., Yoon,, J., & van der Schaar,, M. (2020). Dynamic‐DeepHit: A deep learning approach for dynamic survival analysis with competing risks based on longitudinal data. IEEE Transactions on Biomedical Engineering, 67, 122–133.
Lee,, C., Zame,, W. R., Yoon,, J., & van der Schaar,, M. (2018). DeepHit: A deep learning approach to survival analysis with competing risks. In Proceedings of the Thirty‐Second AAAI Conference on Artificial Intelligence (pp. 2314–2321). Palo Alto: AAAI Press.
Lee,, M. (2017). Inference for cumulative incidence on discrete failure times with competing risks. Journal of Statistical Computation and Simulation, 87, 1989–2001.
Lee,, M., Feuer,, E., & Fine,, J. (2018). On the analysis of discrete time competing risks data. Biometrics, 74, 1468–1481.
Li,, C. (2016). Cause‐specific hazard regression for competing risks data under interval censoring and left truncation. Computational Statistics %26 Data Analysis, 104, 197–208.
Luo,, S., Kong,, X., & Nie,, T. (2016). Spline based survival model for credit risk modeling. European Journal of Operational Research, 253, 869–879.
McCall,, B. (1996). Unemployment insurance rules, joblessness, and part‐time work. Econometrica, 64, 647–682.
Meggiolaro,, S., Giraldo,, A., & Clerici,, R. (2017). A multilevel competing risks model for analysis of university students’ careers in Italy. Studies in Higher Education, 42, 1259–1274.
Möst,, S., Pößnecker,, W., & Tutz,, G. (2016). Variable selection for discrete competing risks models. Quality %26 Quantity, 50, 1589–1610.
Narendranathan,, W., & Stewart,, M. (1993). Modelling the probability of leaving unemployment: Competing risks models with flexible base‐line hazards. Journal of the Royal Statistical Society, Series C, 42, 63–83.
Poguntke,, I., Schumacher,, M., Beyersmann,, J., & Wolkewitz,, M. (2018). Simulation shows undesirable results for competing risks analysis with time‐dependent covariates for clinical outcomes. BMC Medical Research Methodology, 18, 79.
Putter,, H., Fiocco,, M., & Geskus,, R. B. (2007). Tutorial in biostatistics: Competing risks and multi‐state models. Statistics in Medicine, 26, 2389–2430.
Scheike,, T. H., & Keiding,, N. (2006). Design and analysis of time‐to‐pregnancy. Statistical Methods in Medical Research, 15, 127–140.
Schmid,, M., Küchenhoff,, H., Hoerauf,, A., & Tutz,, G. (2016). A survival tree method for the analysis of discrete event times in clinical and epidemiological studies. Statistics in Medicine, 35, 734–751.
Schmid,, M., Tutz,, G., & Welchowski,, T. (2018). Discrimination measures for discrete time‐to‐event predictions. Econometrics and Statistics, 7, 153–164.
Scott,, M. A., & Kennedy,, B. B. (2005). Pitfalls in pathways: Some perspectives on competing risks event history analysis in education research. Journal of Educational and Behavioral Statistics, 30, 413–442.
Singer,, J. D., & Willett,, J. B. (2003). Applied longitudinal data analysis. Oxford: Oxford University Press.
Sparapani,, R., Logan,, B., McCulloch,, R., & Laud,, P. (2016). Nonparametric survival analysis using Bayesian additive regression trees (BART). Statistics in Medicine, 35, 2741–2753.
Sreedevi,, E., Sankaran,, P., & Dhanavanthan,, P. (2014). A nonparametric test for comparing cumulative incidence functions of current status competing risks data. Journal of Statistical Theory and Practice, 8, 743–759.
Steele,, F., Goldstein,, H., & Browne,, W. (2004). A general multilevel multistate competing risks model for event history data, with an application to a study of contraceptive use dynamics. Statistical Modelling, 4, 145–159.
Steinberg,, J. S., Göbel,, A. P., Thiele,, S., Fleckenstein,, M., Holz,, F. G., & Schmitz‐Valckenberg,, S. (2016). Development of intraretinal cystoid lesions in eyes with intermediate age‐related macular degeneration. Retina, 36, 1548–1556.
Troncoso‐Ponce,, D. (2018). Estimation of competing risks duration models with unobserved heterogeneity using hsmlogit. Available at SSRN: https://doi.org/10.2139/ssrn.3114159.
Tutz,, G. (1995). Competing risks models in discrete time with nominal or ordinal categories of response. Quality and Quantity, 29, 405–420.
Tutz,, G., & Schmid,, M. (2016). Modeling discrete time‐to‐event data. New York: Springer.
Vallejos,, C. A., & Steel,, M. F. J. (2017). Bayesian survival modelling of university outcomes. Journal of the Royal Statistical Society, Series A, 180, 613–631.
Yeh,, C., Le,, C., & McHugh,, R. (1984). Competing risk analysis for life table data with known observation times. Biometrical Journal, 26, 111–118.
Young,, J. G., Stensrud,, M. J., Tchetgen Tchetgen,, E. J., & Hernán,, M. A. (2020). A causal framework for classical statistical estimands in failure‐time settings with competing events. Statistics in Medicine, 39, 1199–1236.
Zou,, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418–1429.