Ahmed,, S. E. (2017). Big and complex data analysis. Methodologies and applications. In Contributions to statistics. New York: Springer.
Ait‐Saïdi,, A., Ferraty,, F., & Kassa,, R. (2005). Single functional index model for a time series. Revue Roumaine de Mathématiques Pures et Appliquées, 50(4), 321–330.
Ait‐Saïdi,, A., Ferraty,, F., Kassa,, R., & Vieu,, P. (2008). Cross‐validated estimations in the single‐functional index model. Statistics, 42(6), 475–494.
Ait‐Saïdi,, A., & Kheira,, M. (2016). The conditional cumulative distribution function in single functional index model. Communications in Statistics: Theory and Methods, 45(16), 4896–4911.
Amato,, U., Antoniadis,, A., & De Feis,, A. (2006). Dimension reduction in functional regression with applications. Computational Statistics %26 Data Analysis, 50, 2422–2446.
Aneiros,, G., Bongiorno,, E., Cao,, R., & Vieu,, P. (2017). An introduction to the 4th edition of the international workshop on functional and operatorial statistics. In Functional statistics and related fields Contributions to statistics (pp. 1–5). New York: Springer.
Aneiros,, G., Cao,, R., Fraiman,, R., Genest,, C., & Vieu,, P. (2019). Recent advances in functional data analysis and high‐dimensional statistics. Journal of Multivariate Analysis, 170, 3–9.
Aneiros,, G., Cao,, R., & Vieu,, P. (2019). Editorial on the special issue on functional data analysis and related topics. Computational Statistics, 34(2), 447–450.
Aneiros,, G., Ling,, N., & Vieu,, P. (2015). Error variance estimation in semi‐functional partially linear regression models. Journal of Nonparametric Statistics, 27(3), 316–330.
Aneiros,, G., & Vieu,, P. (2006). Semi‐functional partial linear regression. Statistics %26 Probability Letters, 76(11), 1102–1110.
Aneiros,, G., & Vieu,, P. (2008). Nonparametric time series prediction: A semi‐functional partial linear modeling. Journal of Multivariate Analysis, 99(5), 834–857.
Aneiros,, G., & Vieu,, P. (2011). Automatic estimation procedure in partial linear model with functional data. Statistical Papers, 52(4), 751–771.
Aneiros,, G., & Vieu,, P. (2013). Testing linearity in semi‐parametric functional data analysis. Computational Statistics, 28(2), 413–434.
Aneiros,, G., & Vieu,, P. (2015). Partial linear modelling with multi‐functional covariates. Computational Statistics, 30(3), 647–671.
Aneiros,, G., & Vieu,, P. (2016a). Sparse nonparametric model for regression with functional covariate. Journal of Nonparametric Statistics, 28(4), 839–859.
Aneiros,, G., & Vieu,, P. (2016b). Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data. Test, 25(1), 27–32.
Attaoui,, S. (2014). On the nonparametric conditional density and mode estimates in the single functional index model with strongly mixing data. Sankhya A, 76(2), 356–378.
Attaoui,, S., & Ling,, N. (2016). Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications. Metrika, 79(5), 485–511.
Boente,, G., & Vahnovan,, A. (2017). Robust estimators in semi‐functional partial linear regression models. Journal of Multivariate Analysis, 154, 59–84.
Bongiorno,, E., Goia,, A., Salinelli,, E., & Vieu,, P. (2014). An overview of IWFOS`2014. In Contributions in infinite‐dimensional statistics and related topics (pp. 1–5). Bologna: Società Editrice Esculapio.
Bosq,, D. (2000). Linear processes in function spaces. Theory and applications. In Lecture notes in statistics (Vol. 149). New York: Springer‐Verlag.
Bosq,, D., & Blanke,, D. (2007). Inference and prediction in large dimension. In Wiley series in probability and statistics. Chichester: John Wiley %26 Sons.
Bouchentouf,, A., Mekkaoui,, S., & Rabhi,, A. (2015). Strong uniform consistency rates of conditional quantiles for time series data in the single functional index model. New Trends in Mathematical Sciences, 3(2), 181–198.
Bouraine,, M., Aït‐Saidi,, A., Ferraty,, F., & Vieu,, P. (2010). Choix optimal de l`indice multi‐fonctionnel: Méthode de validation croisée (in French). Revue Roumaine des Mathematiques Pures et Appliquees, 5(5), 355–367.
Chagny,, G., & Roche,, A. (2014). Adaptive and minimax estimation of the cumulative distribution function given a functional covariate. Electronic Journal of Statistics, 8(2), 2352–2404.
Chagny,, G., & Roche,, A. (2016). Adaptive estimation in the functional nonparametric regression model. Journal of Multivariate Analysis, 146, 105–118.
Chen,, D., Hall,, P., & Müller,, H. (2011). Single and multiple index functional regression models with nonparametric link. Annals of Statistics, 39, 1720–1747.
Cook,, R., Forzani,, L., & Yao,, A.‐F. (2010). Necessary and sufficient conditions for consistency of a method for smoothed functional inverse regression. Statistica Sinica, 20(1), 235–238.
Cuevas,, A. (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference, 147, 1–23.
Delsol,, L. (2013). No effect tests in regression on functional variable and some applications to spectrometric studies. Computational Statistics, 28(4), 1775–1811.
Delsol,, L., Ferraty,, F., & Vieu,, P. (2011). Structural test in regression on functional variables. Journal of Multivariate Analysis, 102(3), 422–447.
Delsol,, L., & Goia,, A. (2020). Testing a specification form in single functional index model. In G. Aneiros,, I. Horová,, M. Hušková,, & P. Vieu, (Eds.), Functional and high‐dimensional statistics and related fields (pp. 61–67). New York: Springer.
Ding,, H., Liu,, Y., Xu,, W., & Zhang,, R. (2017). A class of functional partially linear single‐index models. Journal of Multivariate Analysis, 161, 68–82.
Fan,, Y., James,, G., & Radchenko,, P. (2015). Functional additive regression. Annals of Statistics, 43(5), 2296–2325.
Febrero,, M., Galeano,, P., & Gonzalez Manteiga,, W. (2017). Functional principal component regression and functional partial least‐squares regression: An overview and a comparative study. International Statistical Review, 85, 61–83.
Feng,, S., & Xue,, L. (2016). Partially functional linear varying coefficient model. Statistics, 50(4), 717–732.
Ferraty,, F., Goia,, A., Salinelli,, E., & Vieu,, P. (2013). Functional projection pursuit regression. Test, 22(2), 293–320.
Ferraty,, F., Park,, J., & Vieu,, P. (2011). Estimation of a functional single index model. In Recent advances in functional data analysis and related topics Contribution to statistics (pp. 11–116). Heidelberg: Physica‐Verlag/Springer, Heidelberg.
Ferraty,, F., Peuch,, A., & Vieu,, P. (2003). Modèle à indice fonctionnel simple. (French). Comptes Rendus de l`Académie des Sciences, 336(12), 1025–1028.
Ferraty,, F., & Romain,, Y. (2011). The oxford handbook of functional data analysis, Oxford: Oxford University Press.
Ferraty,, F., & Vieu,, P. (2002). The functional nonparametric model and application to spectrometric data. Computational Statistics, 17, 545–564.
Ferraty,, F., & Vieu,, P. (2006). Nonparametric functional data analysis. Theory and practice. New York: Springer‐Verlag.
Ferraty,, F., & Vieu,, P. (2009). Additive prediction and boosting for functional data. Computational Statistics %26 Data Analysis, 53(4), 1400–1413.
Ferré,, L., & Yao,, A.‐F. (2003). Functional sliced inverse regression analysis. Statistics, 37(6), 475–488.
Ferré,, L., & Yao,, A.‐F. (2005). Smoothed functional inverse regression. Statistica Sinica, 15(3), 665–683.
Forzani,, L., & Cook,, R. (2007). A note on smoothed functional inverse regression (with discussions). Statistica Sinica, 17(4), 1677–1681.
Geenens,, G. (2011). Curse of dimensionality and related issues in nonparametric functional regression. Statistics Surveys, 5, 30–43.
Goia,, A., & Vieu,, P. (2014). Some advances on semi‐parametric functional data modelling. In Contributions in infinite‐dimensional statistics and related topics (pp. 135–140). Bologna: Esculapio.
Goia,, A., & Vieu,, P. (2015). A partitioned single functional index model. Computational statistics, 30(3), 673–692.
Goia,, A., & Vieu,, P. (2016). An introduction to recent advances in high/infinite dimensional statistics. Journal of Multivariate Analysis, 146, 1–6.
Hall,, P., Müller,, H., & Yao,, F. (2009). Estimation of functional derivatives. The Annals of Statistics, 37, 3307–3329.
Han,, K., Müller,, H., & Park,, B. (2018). Smooth backfitting for additive modeling with small errors‐in‐variables, with an application to additive functional regression for multiple predictor functions. Bernoulli, 24(2), 1233–1265.
Härdle,, W., Müller,, M., Sperlich,, S., & Werwatz,, A. (2004). Nonparametric and semiparametric models. In Springer series in statistics. New York: Springer‐Verlag.
Härdle,, W., & Stoker,, T. (1989). Investigating smooth multiple regression by the method of average derivatives. Journal of the American Statistical Association, 84(408), 986–995.
Horowitz,, J. (2009). Semiparametric and nonparametric methods in econometrics. In Springer series in statistics. New York: Springer.
Horváth,, L., & Kokoszka,, P. (2012). Inference for functional data with applications. In Springer series in statistics. New‐York: Springer.
Horváth,, L., & Rice,, G. (2015). An introduction to functional data analysis and a principal component approach for testing the equality of mean curves. Revista Matemática Complutense, 28(3), 505–548.
Hsing,, T., & Eubank,, R. (2015). Theoretical foundations to functional data analysis with an introduction to linear operators. In Wiley series in probability and statistics. Chichester: John Wiley %26 Sons.
Huang,, L., Wang,, H., Cui,, H., & Wang,, S. (2015). Sieve M‐estimator for a semi‐functional linear model. Science China. Mathematics, 58(11), 2421–2434.
Jacques,, J., & Preda,, C. (2014). Functional data clustering: A survey. Advances in Data Analysis and Classification, 8(3), 231–255.
Jeong,, S., & Park,, T. (2016). Bayesian Semiparametric inference on functional relationships in linear mixed models. Bayesian Analysis, 11(4), 1137–1163.
Jiang,, C. R., & Wang,, J. L. (2011). Functional single index models for longitudinal data. Annals of Statistics, 39(1), 362–388.
Jiang,, F., Ma,, Y., & Wang,, Y. (2015). Fused kernel‐spline smoothing for repeatedly measured outcomes in a generalized partially linear model with functional single index. Annals of Statistics, 43(5), 1929–1958.
Kadiri,, N., Mekkaoui,, S., & Rabhi,, A. (2017). Rate of uniform consistency for nonparametric of the conditional quantile estimate with functional variables in the single functional index model. International Journal of Mathematics and Statistics, 18(2), 1–29.
Kara‐Zaitri,, L., Laksaci,, A., Rachdi,, M., & Vieu,, P. (2017). Data‐driven kNN estimation in nonparametric functional data‐analysis. Journal of Multivariate Analysis, 153, 176–188.
Lee,, W., Miranda,, M. F., Rausch,, P., Fazio,, M., Downs,, J. G., & Morris,, J. (2019). Bayesian semiparametric functional mixed models for serially correlated functional data, with application to glaucoma data. Journal of the American Statistical Association, 114(526), 495–513. https://doi.org/10.1080/01621459.2018.1476242
Li,, B., & Song,, J. (2017). Nonlinear sufficient dimension reduction for functional data. Annals of Statistics, 45(3), 1059–1095.
Li,, J., Huang,, C., & Zhu,, H. (2017). A functional varying‐coefficient single‐index model for functional response data. Journal of the American Statistical Association, 112(519), 1169–1181.
Li,, Y., & Hsing,, T. (2010). Deciding the dimension of effective dimension reduction space for functional and high‐dimensional data. Annals of Statistics, 38(5), 3028–3062.
Lian,, H. (2011). Functional partial linear model. Journal of Nonparametric Statistics, 23(1), 115–128.
Lian,, H., & Li,, G. (2014). Series expansion for functional sufficient dimension reduction. Journal of Multivariate Analysis, 124, 150–165.
Ling,, N., Li,, Z., & Yang,, W. (2014). Conditional density estimation in the single functional index model for α‐mixing functional data. Communications in Statistics: Theory and Methods, 43(3), 441–454.
Ling,, N., & Vieu,, P. (2018). Nonparametric modelling for functional data: Selected survey and tracks for future. Statistics, 52(4), 934–949.
Ling,, N., & Xu,, Q. (2012). Asymptotic normality of conditional density estimation in the single index model for functional time series data. Statistics %26 Probability Letters, 82(12), 2235–2243.
Luo,, X., Zhu,, L., & Zhu,, H. (2016). Single‐index varying coefficient model for functional responses. Biometrics, 72(4), 1275–1284.
Ma,, H., Bai,, Y., & Zhu,, Z. (2016). Dynamic single‐index model for functional data. Science China. Mathematics, 59(12), 2561–2584.
Ma,, S. (2016). Estimation and inference in functional single‐index models. Annals of the Institute of Statistical Mathematics, 68(1), 181–208.
Maity,, A., & Huang,, J. (2012). Partially linear varying coefficient models stratified by a functional covariate. Statistics %26 Probability Letters, 82(10), 1807–1814.
Mas,, A. (2012). Lower bound in regression for functional data by representation of small ball probabilities. Electronic Journal of Statistics, 6, 1745–1778.
Morris,, J. (2015). Functional regression. Annual Review of Statistics and its Application, 2, 321–359.
Müller,, H. G., & Hall,, P. (2016). Functional data analysis and random objects. Annals of Statistics, 44(5), 1867–1887.
Müller,, H. G., & Yao,, F. (2008). Functional additive models. Journal of the American Statistical Association, 103(484), 1534–1544.
Nagy,, S. (2017). An overview of consistency results for depth functionals. In Functional statistics and related topics Springer contributions to statistics. New York: Springer.
Novo,, S., Aneiros,, G., & Vieu,, P. (2019). Automatic and location‐adaptive estimation in functional single‐index regression. Journal of Nonparametric Statistics, 31(2), 364–392.
Qingguo,, T. (2015). Estimation for semi‐functional linear regression. Statistics, 49(6), 1262–1278.
Rabhi,, A., Belkhir,, N., & Soltani,, S. (2016). On strong uniform consistency of conditional hazard function in the functional single‐index model. International Journal of Mathematics and Statistics, 17(2), 85–109.
Rachdi,, M., & Vieu,, P. (2007). Nonparametric regression for functional data: Automatic smoothing parameter selection. Journal of Statistical Planning and Inference, 137(9), 2784–2801.
Ramsay,, J., & Silverman,, B. (1996). Functional data analysis. In Springer series in statistics. New York: Springer.
Ramsay,, J., & Silverman,, B. (2005). Functional data analysis. In Springer series in statistics (2nd ed.). New York: Springer.
Ramsay,, J. O., & Silverman,, B. W. (2002). Applied functional data analysis, Springer Series in Statistics. New‐York: Springer‐Verlag.
Sangalli,, L. (2018). The role of statistics in the era of big data (editorial). Statistics %26 Probability Letters, 136, 1–3.
Scarpa,, B., & Dunson,, D. B. (2009). Bayesian hierarchical functional data analysis via contaminated informative priors. Biometrics, 65, 772–780.
Scarpa,, B., & Dunson,, D. B. (2014). Enriched stick‐breaking processes for functional data. Journal of the American Statistical Association, 109(506), 647–660.
Shang,, H. (2014b). Bayesian bandwidth estimation for a semi‐functional partial linear regression model with unknown error density. Computational Statistics, 29(3–4), 829–848.
Shang,, H. L. (2014a). A survey of functional principal component analysis. AStA Advances in Statistical Analysis, 98(2), 121–142.
Shi,, J. Q., & Choi,, T. (2011). Gaussian process regression analysis for functional data (Vol. 2011). Boca Raton, FL: CRC Press.
Sperlich,, S., Härdle,, W., & Aydinli,, G. (2006). The art of semiparametrics. Selected papers from the conference held in Berlin, 2003. In Contributions to statistics. Heidelberg: Physica‐Verlag/Springer.
Ullah,, S., & Finch,, C. (2013). Applications of functional data analysis: A systematic review. BMC Medical Research Methodology, 13, 43. https://doi.org/10.1186/1471-2288-13-43
Vieu,, P. (2018). On dimension reduction models for functional data. Statistics %26 Probability Letters, 136, 134–138.
Wang,, G., Feng,, X., & Chen,, M. (2016). Functional partial linear single‐index model. Scandinavian Journal of Statistics, 43(1), 261–274.
Wang,, G., Zhou,, J., Wu,, W., & Chen,, M. M. (2017). Robust functional sliced inverse regression. Statistical Papers, 58(1), 227–245.
Yang,, G., Lin,, H., & Lian,, H. (2019). On double‐index dimension reduction for partially functional data. Journal of Nonparametric Statistics, 31(3), 761–768.
Yu,, P., Du,, J., & Zhang,, Z. (2020). Single‐index partially functional linear regression model. Statistical Papers, 61(3), 1107–1123.
Zhang,, J. (2013a). Analysis of variance for functional data. In Monographs on statistics %26 applied probability, (Vol. 127). Boca Raton, FL: CRC Press.
Zhang,, T. (2013b). Asymptotic properties in semiparametric partially linear regression models for functional data. Acta Mathematicae Applicatae Sinica (English Series), 29(3), 631–644.
Zhou,, J., & Chen,, M. (2012). Spline estimators for semi‐functional linear model. Statistics %26 Probability Letters, 82(3), 505–513.
Zhu,, H., Zhang,, R., Yu,, L., Lian,, H., & Liu,, Y. (2019). Estimation and testing for partially functional linear errors‐in‐variables models. Journal of Multivariate Analysis, 170, 296–314.