Akaike,, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Ali,, A. A., Ullmann,, E., & Hinze,, M. (2017). Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients. SIAM/ASA Journal on Uncertainty Quantification, 5(1), 466–492.
Augustin,, T., Coolen,, F. P., De Cooman,, G., & Troffaes,, M. C. (2014). Introduction to imprecise probabilities, Hoboken, NJ: John Wiley %26 Sons.
Babǔska,, I., Nobile,, F., & Tempone,, R. (2007). A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis, 45(3), 1005–1034.
Bae,, H.‐R., Grandhi,, R. V., & Canfield,, R. A. (2004). Epistemic uncertainty quantification techniques including evidence theory for large‐scale structures. Computers %26 Structures, 82(13–14), 1101–1112.
Beer,, M., Ferson,, S., & Kreinovich,, V. (2013). Imprecise probabilities in engineering analyses. Mechanical Systems and Signal Processing, 37(1–2), 4–29.
Ben‐Haim,, Y., & Elishakoff,, I. (2013). Convex models of uncertainty in applied mechanics, Amsterdam, Netherlands: Elsevier.
Benner,, P., Gugercin,, S., & Willcox,, K. (2015). A survey of projection‐based model reduction methods for parametric dynamical systems. SIAM Review, 57(4), 483–531.
Beskos,, A., Jasra,, A., Law,, K., Tempone,, R., & Zhou,, Y. (2017). Multilevel sequential Monte Carlo samplers. Stochastic Processes and their Applications, 127(5), 1417–1440.
Bijl,, H., Lucor,, D., Mishra,, S., & Schwab,, C. (2013). Uncertainty quantification in computational fluid dynamics (Vol. 92), Berlin/Heidelberg, Germany: Springer Science %26 Business Media.
Bonfiglio,, L., Perdikaris,, P., Brizzolara,, S., & Karniadakis,, G. (2018). Multi‐fidelity optimization of super‐cavitating hydrofoils. Computer Methods in Applied Mechanics and Engineering, 332, 63–85.
Bostanabad,, R., Liang,, B., Gao,, J., Liu,, W. K., Cao,, J., Zeng,, D., … Chen,, W. (2018). Un‐ certainty quantification in multiscale simulation of woven fiber composites. Computer Methods in Applied Mechanics and Engineering, 338, 506–532.
Burnham,, K. P., & Anderson,, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods %26 Research, 33(2), 261–304.
Caflisch,, R. E. (1998). Monte Carlo and Quasi‐Monte Carlo methods. Acta Numer, 7, 1–49.
Capṕe,, O., Douc,, R., Guillin,, A., Marin,, J.‐M., & Robert,, C. P. (2008). Adaptive importance sampling in general mixture classes. Statistics and Computing, 18(4), 447–459.
Chaudhuri,, A., Lam,, R., & Willcox,, K. (2018). Multifidelity uncertainty propagation via adaptive surrogates in coupled multidisciplinary systems. AIAA Journal, 56, 235–249.
Chernatynskiy,, A., Phillpot,, S. R., & LeSar,, R. (2013). Uncertainty quantification in multiscale simulation of materials: A prospective. Annual Review of Materials Research, 43, 157–182.
Cook,, L. W., Jarrett,, J. P., & Willcox,, K. E. (2018). Generalized information reuse for optimization under uncertainty with non‐sample average estimators. International Journal for Numerical Methods in Engineering, 115(12), 1457–1476.
Cornuet,, J.‐M., Marin,, J.‐M., Mira,, A., & Robert,, C. P. (2012). Adaptive multiple importance sampling. Scandinavian Journal of Statistics, 39(4), 798–812.
Dannert,, M. M., Faes,, M., Rodolfo,, M., Fau,, A., Nackenhorst,, U., & Moens,, D. (2021). Imprecise random field analysis for non‐linear concrete damage analysis. Mechanical Systems and Signal Processing, 150, 107343. https://doi.org/10.1016/j.ymssp.2020.107343
Decadt,, A., De Cooman,, G., & De Bock,, J. (2019). Monte Carlo estimation for imprecise probabilities: Basic properties. Proceedings of the Eleventh International Symposium on Imprecise Probabilities: Theories and Applications, PMLR 103, 135–144.
Dempster,, A. P. (2008). Upper and lower probabilities induced by a multivalued mapping. In Classic works of the Dempster‐Shafer theory of belief functions (pp. 57–72). Berlin/Heidelberg, Germany: Springer.
Der Kiureghian,, A., & Ditlevsen,, O. (2009). Aleatory or epistemic? Does it matter? Structural Safety, 31(2), 105–112.
Dodwell,, T., Ketelsen,, C., Scheichl,, R., & Teckentrup,, A. (2019). Multilevel Markov chain Monte Carlo. SIAM Review, 61(3), 509–545.
Dodwell,, T. J., Ketelsen,, C., Scheichl,, R., & Teckentrup,, A. L. (2015). A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. SIAM/ASA Journal on Uncertainty Quantification, 3(1), 1075–1108.
Doucet,, A., Godsill,, S., & Andrieu,, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197–208.
Durlofsky,, L. J., & Chen,, Y. (2012). Uncertainty quantification for subsurface flow problems using coarse‐scale models. In Numerical analysis of multiscale problems (pp. 163–202). Berlin/Heidelberg, Germany: Springer.
Eigel,, M., Merdon,, C., & Neumann,, J. (2016). An adaptive multilevel Monte Carlo method with stochastic bounds for quantities of interest with uncertain data. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 1219–1245.
Elfverson,, D., Hellman,, F., & Målqvist,, A. (2016). A multilevel Monte Carlo method for computing failure probabilities. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 312–330.
Fairbanks,, H. R., Doostan,, A., Ketelsen,, C., & Iaccarino,, G. (2017). A low‐rank control variate for multilevel Monte Carlo simulation of high‐dimensional uncertain systems. Journal of Computational Physics, 341, 121–139.
Ferson,, S., & Hajagos,, J. G. (2004). Arithmetic with uncertain numbers: Rigorous and (often) best possible answers. Reliability Engineering %26 System Safety, 85(1–3), 135–152.
Fetz,, T. (2019). Improving the convergence of iterative importance sampling for computing upper and lower expectations. In International symposium on imprecise probabilities: Theories and applications, 103, 185–193. Ghent, Belgium: Proceedings of Machine Learning Research (PMLR).
Fetz,, T., & Oberguggenberger,, M. (2004). Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering %26 System Safety, 85(1–3), 73–87.
Fetz,, T., & Oberguggenberger,, M. (2016). Imprecise random variables, random sets, and Monte Carlo simulation. International Journal of Approximate Reasoning, 78, 252–264.
Fleeter,, C. M., Geraci,, G., Schiavazzi,, D. E., Kahn,, A. M., & Marsden,, A. L. (2020). Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Computer Methods in Applied Mechanics and Engineering, 365, 113030.
Gao,, Z., Lim,, D., Schwartz,, K. G., & Mavris,, D. N. (2019). A nonparametric‐based approach for the characterization and propagation of epistemic uncertainty due to small datasets. In AIAA Scitech 2019 forum (p. 1490). San Diego, CA: American Institute of Aeronautics and Astronautics, Inc.
Geman,, S., & Geman,, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI‐6(6), 721–741.
Geraci,, G., Eldred,, M. S., & Iaccarino,, G. (2017). A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications. In 19th AIAA non‐deterministic approaches conference (p. 1951). American Institute of Aeronautics and Astronautics, Inc.: Grapevine, TX, USA.
Ghanem,, R., Higdon,, D., & Owhadi,, H. (2017). Handbook of uncertainty quantification (Vol. 6, Berlin/Heidelberg, Germany: Springer.
Ghanem,, R. G., & Spanos,, P. D. (2003). Stochastic finite elements: A spectral approach, North Chelmsford, MA: Courier Corporation.
Giles,, M. B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56(3), 607–617.
Giles,, M. B. (2013). Multilevel Monte Carlo methods. In Monte Carlo and quasi‐Monte Carlo methods 2012 (pp. 83–103). Berlin/Heidelberg, Germany: Springer.
Giles,, M. B. (2015). Multilevel Monte Carlo methods. Acta Numer, 24, 259–328.
Giles,, M. B., & Reisinger,, C. (2012). Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance. SIAM Journal on Financial Mathematics, 3(1), 572–592.
Giles,, M. B., & Waterhouse,, B. J. (2009). Multilevel quasi‐Monte Carlo path simulation. Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics, 8, 165–181.
Giselle Ferńandez‐Godino,, M., Park,, C., Kim,, N. H., & Haftka,, R. T. (2019). Issues in deciding whether to use multifidelity surrogates. AIAA Journal, 57(5), 2039–2054.
Glasserman,, P. (2013). Monte Carlo methods in financial engineering (Vol. 53), Berlin/Heidelberg, Germany: Springer Science %26 Business Media.
Gorodetsky,, A., Geraci,, G., Eldred,, M., & Jakeman,, J. D. (2020). A generalized approximate control variate framework for multifidelity uncertainty quantification. Journal of Computational Physics, 408, 109257.
Guo,, Z., Song,, L., Park,, C., Li,, J., & Haftka,, R. T. (2018). Analysis of dataset selection for multifidelity surrogates for a turbine problem. Structural and Multidisciplinary Optimization, 57(6), 2127–2142.
Guo,, Z., Yi,, J., Fu,, Y., Huang,, Q., & Teng,, Y. (2019). Imprecise risk assessment of distribution network based on evidence and utility theory. In 2019 IEEE innovative smart grid technologies‐Asia (ISGT Asia) (pp. 497–501). New York, NY: IEEE.
Haji‐Ali,, A.‐L., Nobile,, F., & Tempone,, R. (2016). Multi‐index Monte Carlo: When sparsity meets sampling. Numerische Mathematik, 132(4), 767–806.
Haji‐Ali,, A.‐L., & Tempone,, R. (2018). Multilevel and multi‐index Monte Carlo methods for the McKean–Vlasov equation. Statistics and Computing, 28(4), 923–935.
Hastings,, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.
Heinkenschloss,, M., Kramer,, B., Takhtaganov,, T., & Willcox,, K. (2018). Conditional‐ value‐at‐risk estimation via reduced‐order models. SIAM/ASA Journal on Uncertainty Quantification, 6(4), 1395–1423.
Heinrich,, S. (1998). Monte Carlo complexity of global solution of integral equations. Journal of Complexity, 14(2), 151–175.
Heinrich,, S. (2000). The multilevel method of dependent tests. In Advances in stochastic simulation methods (pp. 47–61). Springer.
Heinrich,, S. (2001). Multilevel Monte Carlo methods. In International conference on large‐scale scientific computing (pp. 58–67). Germany: Springer, Berlin/Heidelberg.
Herrmann,, L., & Schwab,, C. (2019). Multilevel quasi‐Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 53(5), 1507–1552.
Hoel,, H., Law,, K. J., & Tempone,, R. (2016). Multilevel ensemble kalman filtering. SIAM Journal on Numerical Analysis, 54(3), 1813–1839.
Jasra,, A., Kamatani,, K., Law,, K. J., & Zhou,, Y. (2017). Multilevel particle filters. SIAM Journal on Numerical Analysis, 55(6), 3068–3096.
Jasra,, A., Kamatani,, K., Law,, K. J., & Zhou,, Y. (2018). A multi‐index Markov chain Monte Carlo method. International Journal for Uncertainty Quantification, 8(1), 61–73.
Jasra,, A., Law,, K. J., & Zhou,, Y. (2016). Forward and inverse uncertainty quantification using multilevel Monte Carlo algorithms for an elliptic nonlocal equation. International Journal for Uncertainty Quantification, 6(6), 501–514.
Jofre,, L., Geraci,, G., Fairbanks,, H., Doostan,, A., & Iaccarino,, G. (2018). Multi‐fidelity uncertainty quantification of irradiated particle‐laden turbulence. Center for Turbulence Research Annual Research Briefs, Stanford University, 2017. .
Kalos,, M. H., & Whitlock,, P. A. (2009). Monte Carlo methods, Hoboken, NJ: John Wiley %26 Sons.
Kebaier,, A. (2005). Statistical romberg extrapolation: A new variance reduction method and applications to option pricing. The Annals of Applied Probability, 15(4), 2681–2705.
Khan,, J., Kani,, N., & Elsheikh,, A. H. (2019). A machine learning based hybrid multi‐ fidelity multi‐level Monte Carlo method for uncertainty quantification. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2019.00105
Kuo,, F., Scheichl,, R., Schwab,, C., Sloan,, I., & Ullmann,, E. (2017). Multilevel quasi‐ Monte Carlo methods for lognormal diffusion problems. Mathematics of Computation, 86(308), 2827–2860.
Le Ma^ıtre,, O., & Knio,, O. M. (2010). Spectral methods for uncertainty quantification: With applications to computational fluid dynamics, Berlin/Heidelberg, Germany: Springer Science %26 Business Media.
Liu,, J. S., & Chen,, R. (1998). Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association, 93(443), 1032–1044.
Liu,, X., Zhang,, J., Yin,, J., Bi,, S., Eisenbach,, M., & Wang,, Y. (2021). Monte Carlo simulation of order‐disorder transition in refractory high entropy alloys: A data‐driven approach. Computational Materials Science, 187, 110135.
Manouchehrynia,, R., Abdullah,, S., & Singh Karam Singh,, S. (2020). Fatigue reliability assessment of an automobile coil spring under random strain loads using probabilistic technique. Metals, 10(1), 12.
Marelli,, S., & Sudret,, B. (2014). UQLab: A framework for uncertainty quantification in Matlab. In Vulnerability, uncertainty, and risk: Quantification, mitigation, and management (pp. 2554–2563). Reston, VA: American Society of Civil Engineers (ASCE).
Metropolis,, N., Rosenbluth,, A. W., Rosenbluth,, M. N., Teller,, A. H., & Teller,, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.
Najm,, H. N., Debusschere,, B. J., Marzouk,, Y. M., Widmer,, S., & Le Maître,, O. (2009). Uncertainty quantification in chemical systems. International Journal for Numerical Methods in Engineering, 80(6–7), 789–814.
Ng,, L. W., & Willcox,, K. E. (2014). Multifidelity approaches for optimization under un‐ certainty. International Journal for Numerical Methods in Engineering, 100(10), 746–772.
Niederreiter,, H. (1978). Quasi‐Monte Carlo methods and pseudo‐random numbers. Bulletin of the American Mathematical Society, 84(6), 957–1041.
Niederreiter,, H. (1992). Random number generation and Quasi‐Monte Carlo methods (Vol. 63), Philadelphia, PA: SIAM.
Olivier,, A., Giovanis,, D., Aakash,, B., Chauhan,, M., Vandanapu,, L., & Shields,, M. (2020). UQpy: A general purpose python package and development environment for uncertainty quantification. Journal of Computational Science, 47, 101204.
Oppenheimer,, M., Little,, C. M., & Cooke,, R. M. (2016). Expert judgement and uncertainty quantification for climate change. Nature Climate Change, 6(5), 445–451.
Owen,, A. B. (2013). Monte Carlo theory, methods and examples. Retrieved from https://statweb.stanford.edu/owen/mc/
Pang,, G., Perdikaris,, P., Cai,, W., & Karniadakis,, G. E. (2017). Discovering variable fractional orders of advection–dispersion equations from field data using multi‐fidelity bayesian optimization. Journal of Computational Physics, 348, 694–714.
Park,, C., Haftka,, R. T., & Kim,, N. H. (2017). Remarks on multi‐fidelity surrogates. Structural and Multidisciplinary Optimization, 55(3), 1029–1050.
Parussini,, L., Venturi,, D., Perdikaris,, P., & Karniadakis,, G. E. (2017). Multi‐fidelity gaussian process regression for prediction of random fields. Journal of Computational Physics, 336, 36–50.
Pasupathy,, R., Schmeiser,, B. W., Taaffe,, M. R., & Wang,, J. (2012). Control‐variate estimation using estimated control means. IIE Transactions, 44(5), 381–385.
Peherstorfer,, B. (2019). Multifidelity Monte Carlo estimation with adaptive low‐fidelity models. SIAM/ASA Journal on Uncertainty Quantification, 7(2), 579–603.
Peherstorfer,, B., Cui,, T., Marzouk,, Y., & Willcox,, K. (2016). Multifidelity importance sampling. Computer Methods in Applied Mechanics and Engineering, 300, 490–509.
Peherstorfer,, B., Kramer,, B., & Willcox,, K. (2017). Combining multiple surrogate models to accelerate failure probability estimation with expensive high‐fidelity models. Journal of Computational Physics, 341, 61–75.
Peherstorfer,, B., Kramer,, B., & Willcox,, K. (2018). Multifidelity preconditioning of the cross‐entropy method for rare event simulation and failure probability estimation. SIAM/ASA Journal on Uncertainty Quantification, 6(2), 737–761.
Peherstorfer,, B., & Willcox,, K. (2016). Data‐driven operator inference for nonintrusive projection‐based model reduction. Computer Methods in Applied Mechanics and Engineering, 306, 196–215.
Peherstorfer,, B., Willcox,, K., & Gunzburger,, M. (2016). Optimal model management for multifidelity Monte Carlo estimation. SIAM Journal on Scientific Computing, 38(5), A3163–A3194.
Peherstorfer,, B., Willcox,, K., & Gunzburger,, M. (2018). Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Review, 60(3), 550–591.
Peng,, X., Liu,, Z., Xu,, X., Li,, J., Qiu,, C., & Jiang,, S. (2018). Nonparametric uncertainty representation method with different insufficient data from two sources. Structural and Multidisciplinary Optimization, 58(5), 1947–1960.
Perdikaris,, P., Venturi,, D., & Karniadakis,, G. E. (2016). Multifidelity information fusion algorithms for high‐dimensional systems and massive data sets. SIAM Journal on Scientific Computing, 38(4), B521–B538.
Perdikaris,, P., Venturi,, D., Royset,, J. O., & Karniadakis,, G. E. (2015). Multi‐fidelity modelling via recursive co‐kriging and Gaussian–Markov random fields. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2179), 20150018.
Pisaroni,, M., Krumscheid,, S., & Nobile,, F. (2020). Quantifying uncertain system outputs via the multilevel Monte Carlo method, Part I: Central moment estimation. Journal of Computational Physics, 414, 109466.
Pisaroni,, M., Nobile,, F., & Leyland,, P. (2017). A continuation multilevel Monte Carlo (C‐ MLMC) method for uncertainty quantification in compressible inviscid aerodynamics. Computer Methods in Applied Mechanics and Engineering, 326, 20–50.
Qian,, E., Peherstorfer,, B., O`Malley,, D., Vesselinov,, V. V., & Willcox,, K. (2018). Multifidelity Monte Carlo estimation of variance and sensitivity indices. SIAM/ASA Journal on Uncertainty Quantification, 6(2), 683–706.
Quaglino,, A., Pezzuto,, S., & Krause,, R. (2019). High‐dimensional and higher‐order multifidelity Monte Carlo estimators. Journal of Computational Physics, 388, 300–315.
Rey,, V., Krumscheid,, S., & Nobile,, F. (2019). Quantifying uncertainties in contact mechanics of rough surfaces using the multilevel Monte Carlo method. International Journal of Engineering Science, 138, 50–64.
Rhee,, C.‐h., & Glynn,, P. W. (2015). Unbiased estimation with square root convergence for sde models. Operations Research, 63(5), 1026–1043.
Rubinstein,, R. Y., & Kroese,, D. P. (2016). Simulation and the Monte Carlo method (Vol. 10), Hoboken, NJ: John Wiley %26 Sons.
Ryu,, S., Kwon,, Y., & Kim,, W. Y. (2019). A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification. Chemical Science, 10(36), 8438–8446.
Sankararaman,, S., & Mahadevan,, S. (2013). Distribution type uncertainty due to sparse and imprecise data. Mechanical Systems and Signal Processing, 37(1–2), 182–198.
Satish,, A. B., Zhang,, J., Woelke,, P., & Shields,, M. (2017). Probabilistic calibration of material models from limited data and its influence on structural response. In Proceedings of 12th international conference on structural safety and reliability. Vienna, Austria: Tu‐verlag.
Scheichl,, R., Stuart,, A., & Teckentrup,, A. (2017). Quasi‐Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 5(1), 493–518.
Shields,, M. D., & Zhang,, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering %26 System Safety, 148, 96–108.
Smith,, R. C. (2013). Uncertainty quantification: Theory, implementation, and applications (Vol. 12), Philadelphia, PA: SIAM.
Sofi,, A., Muscolino,, G., & Giunta,, F. (2020). Propagation of uncertain structural proper‐ ties described by imprecise probability density functions via response surface method. Probabilistic Engineering Mechanics, 60, 103020.
Soize,, C. (2017). Uncertainty quantification, Berlin/Heidelberg, Germany: Springer.
Song,, J. (2020). Stochastic simulation methods for structural reliability under mixed uncertainties. (Unpublished doctoral dissertation). Leibniz University Hannover.
Song,, J., Wei,, P., Valdebenito,, M., Bi,, S., Broggi,, M., Beer,, M., & Lei,, Z. (2019). Generalization of non‐intrusive imprecise stochastic simulation for mixed uncertain variables. Mechanical Systems and Signal Processing, 134, 106316.
Stein,, M. (1987). Large sample properties of simulations using Latin hypercube sampling. Technometrics, 29(2), 143–151.
Sullivan,, T. J. (2015). Introduction to uncertainty quantification (Vol. 63), Berlin/Heidelberg, Germany: Springer.
Sundar,, V., & Shields,, M. D. (2019). Reliability analysis using adaptive kriging surrogates with multimodel inference. ASCE‐ASME Journal of Risk and Uncertainty in Engineering Systems, Part A. Civil Engineering, 5(2), 04019004.
Swischuk,, R., Mainini,, L., Peherstorfer,, B., & Willcox,, K. (2019). Projection‐based model reduction: Formulations for physics‐based machine learning. Computers %26 Fluids, 179, 704–717.
Teckentrup,, A. L. (2013). Multilevel Monte Carlo methods and uncertainty quantification. (Unpublished doctoral dissertation). University of Bath.
Tian,, K., Li,, Z., Ma,, X., Zhao,, H., Zhang,, J., & Wang,, B. (2020). Toward the robust establishment of variable‐fidelity surrogate models for hierarchical stiffened shells by two‐step adaptive updating approach. Structural and Multidisciplinary Optimization, 61, 1515–1528.
Troffaes,, M. C. (2018). Imprecise Monte Carlo simulation and iterative importance sampling for the estimation of lower previsions. International Journal of Approximate Reasoning, 101, 31–48.
Walley,, P. (1991). Statistical reasoning with imprecise probabilities (Vol. 42), London, England: Chapman %26 Hall.
Walley,, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24(2–3), 125–148.
Walley,, P., & Fine,, T. L. (1982). Towards a frequentist theory of upper and lower probability. The Annals of Statistics, 10, 741–761.
Wang,, C., Zhang,, H., & Beer,, M. (2018). Computing tight bounds of structural reliability under imprecise probabilistic information. Computers %26 Structures, 208, 92–104.
Wang,, Y., & McDowell,, D. L. (2020). Uncertainty quantification in multiscale materials modeling, Cambridge, England: Woodhead Publishing Limited.
Wang,, Z., & Jia,, G. (2020). Augmented sample‐based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters. Reliability Engineering %26 System Safety, 197, 106783.
Wei,, P., Liu,, F., Valdebenito,, M., & Beer,, M. (2021). Bayesian probabilistic propagation of imprecise probabilities with large epistemic uncertainty. Mechanical Systems and Signal Processing, 149, 107219.
Wei,, P., Song,, J., Bi,, S., Broggi,, M., Beer,, M., Lu,, Z., & Yue,, Z. (2019). Non‐intrusive stochastic analysis with parameterized imprecise probability models: I. performance estimation. Mechanical Systems and Signal Processing, 124, 349–368.
Weichselberger,, K. (2000). The theory of interval‐probability as a unifying concept for uncertainty. International Journal of Approximate Reasoning, 24(2–3), 149–170.
Zadeh,, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Zhang,, J. (2018). Uncertainty quantification from small data: A multimodel approach. (Unpublished doctoral dissertation). Johns Hopkins University.
Zhang,, J., Liu,, X., Bi,, S., Yin,, J., Zhang,, G., & Eisenbach,, M. (2020). Robust data‐driven approach for predicting the configurational energy of high entropy alloys. Materials %26 Design, 185, 108247.
Zhang,, J., & Shields,, M. (2020). On the quantification and efficient propagation of imprecise probabilities with copula dependence. International Journal of Approximate Reasoning, 122, 24–46.
Zhang,, J., Shields,, M., & TerMaath,, S. (2020). Probabilistic modeling and prediction of out‐ of‐plane unidirectional composite lamina properties. Mechanics of Advanced Materials and Structures, 1–17. https://doi.org/10.1080/15376494.2020.1733713
Zhang,, J., & Shields,, M. D. (2018a). The effect of prior probabilities on quantification and propagation of imprecise probabilities resulting from small datasets. Computer Methods in Applied Mechanics and Engineering, 334, 483–506.
Zhang,, J., & Shields,, M. D. (2018b). On the quantification and efficient propagation of imprecise probabilities resulting from small datasets. Mechanical Systems and Signal Processing, 98, 465–483.
Zhang,, J., & Shields,, M. D. (2019). Efficient Monte Carlo resampling for probability measure changes from Bayesian updating. Probabilistic Engineering Mechanics, 55, 54–66.
Zhang,, J., TerMaath,, S., & Shields,, M. D. (2021). Imprecise global sensitivity analysis using Bayesian multimodel inference and importance sampling. Mechanical Systems and Signal Processing, 148, 107162.