Agresti,, A. (2010). Analysis of ordinal categorical data (2nd ed.). New York: Wiley.
Agresti,, A. (2013). Categorical data analysis (3rd ed.). New York: Wiley.
Agresti,, A., & Kateri,, M. (2017). Ordinal probability effect measures for group comparisons in multinomial cumulative link models. Biometrics, 73(1), 214–219.
Agresti,, A., & Tarantola,, C. (2018). Simple ways to interpret effects in modeling ordinal categorical data. Statistica Neerlandica, 72(3), 210–223.
Allison,, P. D. (1999). Comparing logit and probit coefficients across groups. Sociological Methods %26 Research, 28(2), 186–208.
Alvarez,, R. M., & Brehm,, J. (1995). American ambivalence towards abortion policy: Development of a heteroskedastic probit model of competing values. American Journal of Political Science, 39, 1055–1082.
Ananth,, C. V., & Kleinbaum,, D. G. (1997). Regression models for ordinal responses: A review of methods and applications. International Journal of Epidemiology, 26, 1323–1333.
Anderson,, J. A. (1984). Regression and ordered categorical variables. Journal of the Royal Statistical Society B, 46, 1–30.
Anderson,, J. A., & Phillips,, R. R. (1981). Regression, discrimination and measurement models for ordered categorical variables. Applied Statistics, 30, 22–31.
Archer,, K., & Williams,, A. (2012). L 1 penalized continuation ratio models for ordinal response prediction using high‐dimensional datasets. Statistics in Medicine, 31(14), 1464–1474.
Archer,, K. J. (2010). Rpartordinal: An R package for deriving a classification tree for predicting an ordinal response. Journal of Statistical Software, 34(7).
Archer,, K. J., Hou,, J., Zhou,, Q., Ferber,, K., Layne,, J. G., & Gentry,, A. E. (2014). ordinalgmifs: An r package for ordinal regression in high‐dimensional data settings. Cancer Informatics, 13, CIN–S20806.
Armstrong,, B., & Sloan,, M. (1989). Ordinal regression models for epidemiologic data. American Journal of Epidemiology, 129, 191–204.
Baumgartner,, H., & Steenkamp,, J.‐B. E. (2001). Response styles in marketing research: A cross‐national investigation. Journal of Marketing Research, 38(2), 143–156.
Bender,, R., & Grouven,, U. (1998). Using binary logistic regression models for ordinal data with non‐proportional odds. Journal of Clinical Epidemiology, 51, 809–816.
Berger,, M., Tutz,, G., & Schmid,, M. (2019). Tree‐structured modelling of varying coefficients. Statistics and Computing, 29(2), 217–229.
Böckenholt,, U. (2017). Measuring response styles in likert items. Psychological Methods, 22, 69–83.
Böckenholt,, U., & Meiser,, T. (2017). Response style analysis with threshold and multi‐process IRT models: A review and tutorial. British Journal of Mathematical and Statistical Psychology, 70(1), 159–181.
Bolt,, D. M., & Newton,, J. R. (2011). Multiscale measurement of extreme response style. Educational and Psychological Measurement, 71(5), 814–833.
Brant,, R. (1990). Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics, 46, 1171–1178.
Breen,, R., Holm,, A., & Karlson,, K. B. (2014). Correlations and nonlinear probability models. Sociological Methods %26 Research, 43(4), 571–605.
Breen,, R., & Luijkx,, R. (2010). Mixture models for ordinal data. Sociological Methods and Research, 39, 3–24.
Breiman,, L. (2001). Random forests. Machine Learning, 45, 5–32.
Breiman,, L., Friedman,, J. H., Olshen,, R. A., & Stone,, J. C. (1984). Classification and regression trees. Monterey, CA: Wadsworth.
Bürkner,, P.‐C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.
Campbell,, M. K., & Donner,, A. P. (1989). Classification efficiency of multinomial logistic‐regression relative to ordinal logistic‐regression. Journal of the American Statistical Association, 84(406), 587–591.
Campbell,, M. K., Donner,, A. P., & Webster,, K. M. (1991). Are ordinal models useful for classification? Statistics in Medicine, 10, 383–394.
Cappelli,, C., Simone,, R., & Di Iorio,, F. (2019). cubremot: A tool for building model‐based trees for ordinal responses. Expert Systems with Applications, 124, 39–49.
Christensen,, R. H. (2015). Analysis of ordinal data with cumulative link models—Estimation with the R‐package ordinal. R‐Package version, 1–31.
Cox,, C. (1995). Location‐scale cumulative odds models for ordinal data: A generalized non‐linear model approach. Statistics in Medicine, 14, 1191–1203.
D`Elia,, A., & Piccolo,, D. (2005). A mixture model for preference data analysis. Computational Statistics %26 Data Analysis, 49, 917–934.
De Boeck,, P., & Partchev,, I. (2012). Irtrees: Tree‐based item response models of the glmm family. Journal of Statistical Software, 48(1), 1–28.
Dolgun,, A., & Saracbasi,, O. (2014). Assessing proportionality assumption in the adjacent category logistic regression model. Statistics and its Interface, 7(2), 275–295.
Eilers,, P. H. C., & Marx,, B. D. (1996). Flexible smoothing with B‐splines and penalties. Statistical Science, 11, 89–121.
Fernandez,, D., Liu,, I., & Costilla,, R. (2019). A method for ordinal outcomes: The ordered stereotype model. International Journal of Methods in Psychiatric Research, 28, e1801.
Fullerton,, A. S., & Xu,, J. (2012). The proportional odds with partial proportionality constraints model for ordinal response variables. Social Science Research, 41(1), 182–198.
Galimberti,, G., Soffritti,, G., Maso,, M. D.(2012). Classification trees for ordinal responses in R: The rpartscore package. Journal of Statistical Software, 47(i10).
Goodman,, L. A. (1981a). Association models and canonical correlation in the analysis of cross‐classification having ordered categories. Journal of the American Statistical Association, 76, 320–334.
Goodman,, L. A. (1981b). Association models and the bivariate normal for contingency tables with ordered categories. Biometrika, 68, 347–355.
Gottard,, A., Iannario,, M., & Piccolo,, D. (2016). Varying uncertainty in CUB. Advances in Data Analysis and Classification, 10(2), 225–244.
Greene,, W., & Hensher,, D. (2003). A latent class model for discrete choice analysis: Contrasts with mixed logit. Transportation Resesearch, Part B, 39, 681–689.
Greenland,, S. (1994). Alternative models for ordinal logistic regression. Statistics in Medicine, 13, 1665–1677.
Grün,, B., & Leisch,, F. (2008). Identifiability of finite mixtures of multinomial logit models with varying and fixed effects. Journal of Classification, 25, 225–247.
Gu,, C. (2002). Smoothing splines ANOVA models. New York: Springer‐Verlag.
Hamada,, M., & Wu,, C. F. J. (1990). A critical look at accumulation analysis and related methods. Technometrics, 32, 119–130.
Hastie,, T., & Tibshirani,, R. (1993). Varying‐coefficient models. Journal of the Royal Statistical Society B, 55, 757–796.
Hauser,, R. M., & Andrew,, M. (2006). 1. Another look at the stratification of educational transitions: The logistic response model with partial proportionality constraints. Sociological Methodology, 36(1), 1–26.
Hedeker,, D., & Mermelstein,, R. J. (1998). A multilevel thresholds of change model for analysis of stages of change data. Multivariate Behavioral Research, 33(4), 427–455.
Hothorn,, T., Hornik,, K., & Zeileis,, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15, 651–674.
Iannario,, M. (2012a). Hierarchical CUB models for ordinal variables. Communications in Statistics‐Theory and Methods, 41(16–17), 3110–3125.
Iannario,, M. (2012b). Modelling shelter choices in a class of mixture models for ordinal responses. Statistical Methods and Applications, 21, 1–22.
Iannario,, M., Monti,, A. C., Piccolo,, D., Ronchetti,, E. (2017). Robust inference for ordinal response models. Electronic Journal of Statistics, 11(2), 3407–3445.
Iannario,, M., & Piccolo,, D. (2010a). A new statistical model for the analysis of customer satisfaction. Quality Technology %26 Quantitative Management, 7(2), 149–168.
Iannario,, M., & Piccolo,, D. (2010b). Statistical modelling of subjective survival probabilities. Genus, 66, 17–42.
Iannario,, M., Piccolo,, D., & Simone,, R. (2020). CUB: A class of mixture models for ordinal data. R Package Version 1.1.4, Available from http://cran.r-project.org/package=cub.
Janitza,, S. T. G., & Boulesteix,, A.‐L. (2016). Random forests for ordinal responses: Prediction and variable selection. Computational Statistics and Data Analysis, 96, 57–73.
Johnson,, T. R. (2003). On the use of heterogeneous thresholds ordinal regression models to account for individual differences in response style. Psychometrika, 68(4), 563–583.
Karlson,, K. B., Holm,, A., & Breen,, R. (2012). Comparing regression coefficients between same‐sample nested models using logit and probit: A new method. Sociological Methodology, 42(1), 286–313.
Kateri,, M. (2014). Contingency table analysis. Methods and implementation using R, Aachen: . Springer.
Khorramdel,, L., & von Davier,, M. (2014). Measuring response styles across the big five: A multiscale extension of an approach using multinomial processing trees. Multivariate Behavioral Research, 49(2), 161–177.
Kim,, J.‐H. (2003). Assessing practical significance of the proportional odds assumption. Statistics %26 Probability Letters, 65(3), 233–239.
Kulas,, J. T., Stachowski,, A. A., & Haynes,, B. A. (2008). Middle response functioning in likert‐responses to personality items. Journal of Business and Psychology, 22(3), 251–259.
Läärä,, E., & Matthews,, J. N. (1985). The equivalence of two models for ordinal data. Biometrika, 72, 206–207.
Liu,, I., Mukherjee,, B., Suesse,, T., Sparrow,, D., & Park,, S. K. (2009). Graphical diagnostics to check model misspecification for the proportional odds regression model. Statistics in Medicine, 28(3), 412–429.
Long,, J. S. (1997). Regression models for categorical and limited dependent variables. Advanced quantitative techniques in the social sciences (vol. 7, p. 219).
Long,, J. S., & Freese,, J. (2006). Regression models for categorical dependent variables using Stata, College Station, TX: . Stata Press.
Long,, J. S., & Mustillo,, S. A. (2018). Using predictions and marginal effects to compare groups in regression models for binary outcomes. Sociological Methods %26 Research. https://doi.org/10.1177/0049124118799374
Manisera,, M., & Zuccolotto,, P. (2014). Modeling rating data with nonlinear cub models. Computational Statistics %26 Data Analysis, 78, 100–118.
McCullagh,, P. (1980). Regression model for ordinal data (with discussion). Journal of the Royal Statistical Society B, 42, 109–127.
Meiser,, T., Plieninger,, H., & Henninger,, M. (2019). IRTree models with ordinal and multidimensional decision nodes for response styles and trait‐based rating responses. British Journal of Mathematical and Statistical Psychology, 72, 501–516.
Messick,, S. (1991). Psychology and methodology of response styles. In R. E. Snow, & D. E. Wiley, (Eds.), Improving inquiry in social science: A volume in honor of lee J. Cronbach (pp. 161–200). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
Mood,, C. (2010). Logistic regression: Why we cannot do what we think we can do, and what we can do about it. European Sociological Review, 26(1), 67–82.
Nair,, V. N. (1987). Chi‐squared‐type tests for ordered alternatives in contingency tables. Journal of the American Statistical Association, 82, 283–291.
Peterson,, B., & Harrell,, F. E. (1990). Partial proportional odds models for ordinal response variables. Applied Statistics, 39, 205–217.
Peyhardi,, J., Trottier,, C., & Guédon,, Y. (2015). A new specification of generalized linear models for categorical data. Biometrika, 102, 889–906.
Peyhardi,, J., Trottier,, C., & Guédon,, Y. (2016). Partitioned conditional generalized linear models for categorical responses. Statistical Modelling, 16(4), 297–321.
Piccolo,, D. (2003). On the moments of a mixture of uniform and shifted binomial random variables. Quaderni di Statistica, 5, 85–104.
Piccolo,, D. (2015). Inferential issues on CUBE models with covariates. Communications in Statistics‐Theory and Methods, 44(23), 5023–5036.
Piccolo,, D., & Simone,, R. (2019). The class of CUB models: Statistical foundations, inferential issues and empirical evidence (with discussions and a rejoinder). Statistical Methods and Applications, 28, 389–493.
Plieninger,, H., & Meiser,, T. (2014). Validity of multiprocess IRT models for separating content and response styles. Educational and Psychological Measurement, 74(5), 875–899.
Pössnecker,, W. & Tutz,, G. (2016). A general framework for the selection of effect type in ordinal regression. Technical report, technical report 186. Department of Statistics LMU.
Rattinger,, H., Roßteutscher,, S., Schmitt‐Beck,, R., Weßels,, B., & Wolf,, C. (2014). Pre‐election cross section (GLES 2013). GESIS Data Archive, Cologne ZA5700 Data file Version 2.0.0.
Rohwer,, G. (2015). A note on the heterogeneous choice model. Sociological Methods %26 Research, 44(1), 145–148.
Rudolfer,, S. M., Watson,, P. C., & Lesaffre,, E. (1995). Are ordinal models useful for classification? A revised analysis. Journal of Statistical Computation Simulation, 52(2), 105–132.
Simone,, R. (2020). FastCUB: Fast EM and best‐subset selection for CUB models for rating data, R package version 0.0.2, Available from https://cran.r-project.org/package=fastcub.
Simone,, R., & Tutz,, G. (2018). Modelling uncertainty and response styles in ordinal data. Statistica Neerlandica, 72(3), 224–245.
Thissen‐Roe,, A., & Thissen,, D. (2013). A two‐decision model for responses to likert‐type items. Journal of Educational and Behavioral Statistics, 38(5), 522–547.
Tibshirani,, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B, 58, 267–288.
Tutz,, G. (1989). Compound regression models for categorical ordinal data. Biometrical Journal, 31, 259–272.
Tutz,, G. (1991). Sequential models in ordinal regression. Computational Statistics %26 Data Analysis, 11, 275–295.
Tutz,, G. (2003). Generalized semiparametrically structured ordinal models. Biometrics, 59, 263–273.
Tutz,, G. (2012). Regression for categorical data, Cambridge: . Cambridge University Press.
Tutz,, G. (2019). Modelling heterogeneity: On the problem of group comparisons with logistic regression and the potential of the heterogeneous choice model. Advances in Data Analysis and Classification, 14, 517–542. https://doi.org/10.1007/s11634-019-00381-8
Tutz,, G. (2020). Hierarchical models for the analysis of Likert scales in regression and item response analysis. International Statistical Review. https://doi.org/10.1111/insr.12396
Tutz,, G., & Berger,, M. (2016). Response styles in rating scales ‐ simultaneous modelling of content‐related effects and the tendency to middle or extreme categories. Journal of Educational and Behavioral Statistics, 41, 239–268.
Tutz,, G., & Berger,, M. (2017). Separating location and dispersion in ordinal regression models. Econometrics and Statistics, 2, 131–148.
Tutz,, G. & Berger,, M. (2020). Non proportional odds models are widely dispensable ‐ sparser modeling based on parametric and additive location‐shift approaches. Technical report, Availablr ftom http://arxiv.org/abs/2006.03914.
Tutz,, G., & Schmid,, M. (2016). Modeling discrete time‐to‐event data, Switzerland: . Springer‐Verlag.
Tutz,, G., & Schneider,, M. (2019). Flexible uncertainty in mixture models for ordinal responses. Journal of Applied Statistics, 46, 1582–1601.
Tutz,, G., Schneider,, M., Iannario,, M., & Piccolo,, D. (2017). Mixture models for ordinal responses to account for uncertainty of choice. Advances in Data Analysis and Classification, 11(2), 281–305.
Van Vaerenbergh,, Y., & Thomas,, T. D. (2013). Response styles in survey research: A literature review of antecedents, consequences, and remedies. International Journal of Public Opinion Research, 25(2), 195–217.
Walker,, R. W. (2016). On generalizing cumulative ordered regression models. Journal of Modern Applied Statistical Methods, 15(2), 28.
Williams,, R. (2006). Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata Journal, 6(1), 58–82.
Williams,, R. (2009). Using heterogeneous choice models to compare logit and probit coefficients across groups. Sociological Methods %26 Research, 37(4), 531–559.
Williams,, R. (2010). Fitting heterogeneous choice models with oglm. Stata Journal, 10(4), 540–567.
Williams,, R. (2012). Using the margins command to estimate and interpret adjusted predictions and marginal effects. The Stata Journal, 12(2), 308–331.
Williams,, R. (2016). Understanding and interpreting generalized ordered logit models. The Journal of Mathematical Sociology, 40(1), 7–20.
Williams,, R. A., & Quiroz,, C. (2020). Ordinal regression models. In P. Atkinson,, S. Delamont,, A. Cernat,, J. Sakshaug,, & R. Williams, (Eds.), SAGE research methods foundations (pp. 51–73).
Wood,, S. (2015). Package mgcv. R Package Version 1, 29.
Wood,, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99, 673–686.
Wurm,, M. J., Rathouz,, P. J., & Hanlon,, B. M. (2017). Regularized ordinal regression and the ordinalnet R package. arXiv Preprint arXiv, 1706, 05003.
Yee,, T. (2010). The VGAM package for categorical data analysis. Journal of Statistical Software, 32(10), 1–34.
Yee,, T. W. (2015). Vector generalized linear and additive models: With an implementation in R, New York, NY: . Springer.
Zeileis,, A., Hothorn,, T., & Hornik,, K. (2008). Model‐based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2), 492–514.