Assale,, M., Dui,, L., Cina,, A., Seveso,, A., & Cabitza,, F. (2019). The revival of the notes field: Leveraging the unstructured content in electronic health records. Frontiers of Medicine (Lausanne), 6, 66.
Bates,, D. W., Auerbach,, A., Schulam,, P., Wright,, A., & Saria,, S. (2020). Reporting and implementing interventions involving machine learning and artificial intelligence. Annals of Internal Medicine, 172(11_Supplement), S137–S144. https://doi.org/10.7326/m19-0872
Beaulieu‐Jones,, B., & Moore,, J. (2017). Missing data imputation in the electronic health record using deeply learned autoencoders. Pacific Symposium on Biocomputing, 22, 207–218.
Bhaskaran,, K., & Smeeth,, L. (2014). What is the difference between missing completely at random and missing at random? International Journal of Epidemiology, 43, 1336–1339.
Bird,, S., Klein,, E., & Loper,, E. (2009). Natural language processing with python: Analyzing text with the natural language toolkit. O`Reilly Media.
Bjarnadottir,, R., & Lucero,, R. (2018). What can we learn about fall risk Factors from EHR nursing notes? A text mining study. eGEMs (Washington, DC), 6, 21.
Broekhuizen,, H., Groothuis‐Oudshoorn,, C. G. M., van Til,, J. A., Hummel,, J. M., & IJzerman,, M. J. (2015). A review and classification of approaches for dealing with uncertainty in multi‐criteria decision analysis for healthcare decisions. PharmacoEconomics, 33(5), 445–455. https://doi.org/10.1007/s40273-014-0251-x
Callahan,, T. J., Bauck,, A. E., Bertoch,, D., Brown,, J., Khare,, R., Ryan,, P. B., … Kahn,, M. G. (2017). A Comparison of Data Quality Assessment Checks in Six Data Sharing Networks. eGEMs (Generating Evidence %26 Methods to improve patient outcomes), 5(1), 8–8. http://dx.doi.org/10.5334/egems.223.
Callahan,, A., Fries,, J. A., Ré,, C., Huddleston,, J. I., Giori,, N. J., Delp,, S., & Shah,, N. H. (2019). Medical device surveillance with electronic health records. npj Digital Medicine, 2(1), 94. https://doi.org/10.1038/s41746-019-0168-z
Cao,, B., He,, L., Kong,, X., Yu,, P., Hao,, Z., & Ragin,, A. (2014, December). Tensor‐based multi‐view feature selection with applications to brain diseases. Proceedings of the IEEE international conference on data mining, 2014, 40–49.
Chen,, J., Chun,, D., Patel,, M., Chiang,, E., & James,, J. (2019). The validity of synthetic clinical data: A validation study of a leading synthetic data generator (Synthea) using clinical quality measures. BMC Medical Informatics and Decision Making, 19, 44.
Choo,, J., & Liu,, S. (2018). Visual analytics for explainable deep learning. IEEE Computer Graphics and Applications, 38, 84–92.
Crofford,, L. (2015). Chronic pain: Where the body meets the brain. Transactions of the American Clinical and Climatological Association, 126, 167–183.
Dalianis,, H. (2018). Clinical text mining: Secondary use of electronic patient records. Springer. https://doi.org/10.1007/978-3-319-78503-5
Devlin,, J., Chang,, M.‐W., Lee,, K., & Toutanova,, K. (2018). Bert: Pre‐training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Downs,, J., Velupillai,, S., George,, G., Holden,, R., Kikoler,, M., Dean,, H., … Dutta,, R. (2017). Detection of suicidality in adolescents with autism spectrum disorders: Developing a natural language processing approach for use in electronic health records. American Medical Informatics Association annual symposium proceedings, 2017, 641–649.
Du,, L., Xia,, C., Deng,, Z., Lu,, G., Xia,, S., & Ma,, J. (2018). A machine learning based approach to identify protected health information in Chinese clinical text. International Journal of Medical Informatics, 116, 24–32. https://doi.org/10.1016/j.ijmedinf.2018.05.010
Edgcomb,, J., & Zima,, B. (2019). Machine learning, natural language processing, and the electronic health record: Innovations in mental health services research. Psychiatric Services, 70, 346–349.
Ehrentraut,, C., Ekholm,, M., Tanushi,, H., Tiedemann,, J., & Dalianis,, H. (2016). Detecting hospital‐acquired infections: A document classification approach using support vector machines and gradient tree boosting. Health Informatics Journal, 24, 24–42.
El‐Sappagh,, S., Franda,, F., Ali,, F., & Kwak,, K. (2018). SNOMED CT standard ontology based on the ontology for general medical science. BMC Medical Informatics and Decision Making, 18, 76.
Estiri,, H., Klann,, J. G., & Murphy,, S. N. (2019). A clustering approach for detecting implausible observation values in electronic health records data. BMC Medical Informatics and Decision Making, 19(1), 142. https://doi.org/10.1186/s12911-019-0852-6
Fernandes,, A. C., Dutta,, R., Velupillai,, S., Sanyal,, J., Stewart,, R., & Chandran,, D. (2018). Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing. Scientific Reports, 8(1), 7426. https://doi.org/10.1038/s41598-018-25773-2
Freeman,, R., Moore,, L., Garcia,, A. L., Charlett,, A., & Holmes,, A. (2013). Advances in electronic surveillance for healthcare‐associated infections in the 21st century: A systematic review. The Journal of Hospital Infection, 84, 106–119.
Gardner, R. M. (2016). Clinical Information Systems – From Yesterday to Tomorrow. Yearbook of Medical Informatics, 25, (S 01), S62–S75. http://dx.doi.org/10.15265/iys-2016-s010.
GDPR. (2016). Regulation on the protection of natural persons with regard to the processing of personal data and on the free movement of such data. EU, 679. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
Giacomelli,, I., Jha,, S., Kleiman,, R., Page,, D., & Yoon,, K. (2019). Privacy‐preserving collaborative prediction using random forests. AMIA joint summits on translational science proceedings, 2019, 248–257.
Gligorijević,, V., & Pržulj,, N. (2015). Methods for biological data integration: Perspectives and challenges. Journal of The Royal Society Interface, 12(112), 20150571. https://doi.org/10.1098/rsif.2015.0571
Golas, S. B., Shibahara, T., Agboola, S., Otaki, H., Sato, J., Nakae, T., Hisamitsu, T., Kojima, G., Felsted, J., Kakarmath, S., Kvedar, J., Jethwani, K. (2018). A machine learning model to predict the risk of 30‐day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. BMC Medical Informatics and Decision Making, 18, (1), 1–44. http://dx.doi.org/10.1186/s12911-018-0620-z.
Goldberg,, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345–420. https://doi.org/10.1613/jair.4992 https://jair.org/index.php/jair/article/view/11030
Hailemichael,, M., Marco‐Ruiz,, L., & Bellika,, J. (2015). Privacy‐preserving statistical query and processing on distributed OpenEHR data. Studies in Health Technology and Informatics, 210, 766–770.
Hasan,, S. A., & Farri,, O. (2019). Clinical natural language processing with deep learning. In Data science for healthcare (pp. 147–171). Springer International Publishing. https://doi.org/10.1007/978-3-030-05249-2_5 http://link.springer.com/10.1007/978-3-030-05249-2{_}5
HIPAA. (2003). Health insurance portability and accountability act (HIPAA). U.S. Department of Health and Human Services. http://www.cdc.gov/mmwr/preview/mmwrhtml/m2e411a1.htm
HL7 Argonaut Project. (2020). HL7 Argonaut Project. https://argonautwiki.hl7.org/Main_Page
HL7 Codex. (2020). HL7 Codex. https://www.hl7.org/codex/
HL7 FHIR Accelerator. (2020). HL7 FHIR Accelerator. https://www.hl7.org/about/fhir-accelerator/
HL7 Vulcan. (2020). HL7 Vulcan. http://www.hl7.org/vulcan/
Hyseni,, L. N., & Ibrahimi,, A. (2017). Comparison of the cloud computing platforms provided by Amazon and Google. In 2017 Computing Conference (pp. 236–243). IEEE. https://doi.org/10.1109/SAI.2017.8252109 http://ieeexplore.ieee.org/document/8252109/
Ivanović,, M., & Budimac,, Z. (2014). An overview of ontologies and data resources in medical domains. Expert Systems with Applications, 41(11), 5158–5166. https://doi.org/10.1016/j.eswa.2014.02.045
Ive,, J., Viani,, N., Kam,, J., Yin,, L., Verma,, S., Puntis,, S., Cardinal,, R. N., Roberts,, A., Stewart,, R., & Velupillai,, S. (2020). Generation and evaluation of artificial mental health records for natural language processing. npj Digital Medicine, 3(1), 69. https://doi.org/10.1038/s41746-020-0267-x
Jing,, B., Xie,, P., & Xing,, E. (2017). On the automatic generation of medical imaging reports. arxiv preprint arxiv:1711.08195.
Johnson,, S., Speedie,, S., Simon,, G., Kumar,, V., & Westra,, B. (2015). A data quality ontology for the secondary use of EHR data. In American Medical Informatics Association annual symposium proceedings, 2015, 1937–1946.
Jothi,, N., Rashid,, N. A., & Husain,, W. (2015). Data Mining in Healthcare—A review. Procedia Computer Science, 72, 306–313. https://doi.org/10.1016/j.procs.2015.12.145
Juhn,, Y., & Liu,, H. (2020). Artificial intelligence approaches using natural language processing to advance EHR‐based clinical research. The Journal of Allergy and Clinical Immunology, 145, 463–469.
Jurafsky,, D., & Martin,, J. H. (2019). Speech and language processing. Pearson https://web.stanford.edu/~jurafsky/slp3/
Kahn,, M., Callahan,, T., Barnard,, J., Bauck,, A., Brown,, J., Davidson,, B., … Schilling,, L. (2016). A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data. eGEMs (Washington, DC), 4, 1244.
Kaji,, S., & Kida,, S. (2019). Overview of image‐to‐image translation by use of deep neural networks: Denoising, super‐resolution, modality conversion, and reconstruction in medical imaging. Radiological Physics and Technology, 12, 235–248.
Karimi,, S., Wang,, C., Metke‐Jimenez,, A., Gaire,, E., & Paris,, C. (2015). Text and data mining techniques in adverse drug reaction detection. ACM Computing Surveys (CSUR), 47(4), 56.
Keek,, S. A., Leijenaar,, R. T., Jochems,, A., & Woodruff,, H. C. (2018). A review on radiomics and the future of theranostics for patient selection in precision medicine. The British Journal of Radiology, 91(1091), 20170926. https://doi.org/10.1259/bjr.20170926
Khairat,, S., Marc,, D., Crosby,, W., & Sanousi,, A. A. (2018). Reasons for physicians not adopting clinical decision support systems: Critical analysis. JMIR Medical Informatics, 6(2), e24. https://doi.org/10.2196/medinform.8912
Khalifa,, M. (2019). Challenges of health analytics utilization: A review of literature. Studies in Health Technology and Informatics, 262, 55–58.
Khong,, P., Holroyd,, E., & Wang,, W. (2015). A critical review of the theoretical frameworks and the conceptual factors in the adoption of clinical decision support systems. Computers, Informatics, Nursing, 33, 555–570.
Kim,, E., Rubinstein,, S., Nead,, K., Wojcieszynski,, A., Gabriel,, P., & Warner,, J. (2019). The evolving use of electronic health records (EHR) for research. Seminars in Radiation Oncology, 29, 354–361.
Kong,, H. (2019). Managing unstructured big data in healthcare system. Healthcare Informatics Research, 25, 1–2.
Kooij,, L., Groen,, W., & van Harten,, W. (2017). The effectiveness of information technology‐supported shared care for patients with chronic disease: A systematic review. Journal of Medical Internet Research, 19, e221.
Korach,, Z., Yang,, J., Rossetti,, S., Cato,, K., Kang,, M., Knaplund,, C., … Zhou,, L. (2020). Mining clinical phrases from nursing notes to discover risk factors of patient deterioration. International Journal of Medical Informatics, 135, 104053.
Kruse,, C. S., Kristof,, C., Jones,, B., Mitchell,, E., & Martinez,, A. (2016). Barriers to electronic health record adoption: A systematic literature review. Journal of Medical Systems, 40(12), 252. https://doi.org/10.1007/s10916-016-0628-9
Kueper,, J., Terry,, A., Zwarenstein,, M., & Lizotte,, D. (2020). Artificial intelligence and primary care research: A scoping review. Annals of Family Medicine, 18, 250–258.
Lambin,, P., Leijenaar,, R. T., Deist,, T. M., Peerlings,, J., de Jong,, E. E., van Timmeren,, J., … Walsh,, S. (2017). Radiomics: The bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 14(12), 749–762. https://doi.org/10.1038/nrclinonc.2017.141
Langarizadeh,, M., & Moghbeli,, F. (2016). Applying naive Bayesian networks to disease prediction: A systematic review. Acta Informatica Medica, 24(5), 364–369. https://doi.org/10.5455/aim.2016.24.364-369
Lee,, K., Weiskopf,, N., & Pathak,, J. (2017). A framework for data quality assessment in clinical research datasets. American Medical Informatics Association annual symposium proceedings, 2017, 1080–1089.
Lee,, H., Yune,, S., Mansouri,, M., Kim,, M., Tajmir,, S., Guerrier,, C., … Do,, S. (2019). An explainable deep‐learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nature Biomedical Engineering, 3, 173–182.
Lee,, J., Yoon,, W., Kim,, S., Kim,, D., Kim,, S., So,, C., & Kang,, J. (2020). BioBERT: A pre‐trained biomedical language representation model for biomedical text mining. Bioinformatics, 36, 1234–1240.
Lei,, Z., Sun,, Y., Nanehkaran,, Y., Yang,, S., Islam,, M. S., Lei,, H., & Zhang,, D. (2020). A novel data‐driven robust framework based on machine learning and knowledge graph for disease classification. Future Generation Computer Systems, 102, 534–548. https://doi.org/10.1016/j.future.2019.08.030
Litjens,, G., Kooi,, T., Bejnordi,, B. E., Setio,, A. A. A., Ciompi,, F., Ghafoorian,, M., Van Der Laak,, J. A. W. M., Van Ginneken,, B., & Sánchez,, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
Liu, Yuzhe, Gopalakrishnan, Vanathi (2017). An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data. Data, 2, (1), 8http://dx.doi.org/10.3390/data2010008.
Liu,, B., & Liu,, J. (2019). Overview of image denoising based on deep learning. Journal of Physics: Conference Series, 1176, 022010. https://doi.org/10.1088/1742-6596/1176/2/022010
Lundervold,, A., & Lundervold,, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29, 102–127.
Ma,, J., Zhang,, Q., Lou,, J., Ho,, J., Xiong,, L., & Jiang,, X. (2019). Privacy‐preserving tensor factorization for collaborative health data analysis. In Proceedings of the ACM international conference on information and knowledge management, 2019, 1291–1300.
Marco‐Ruiz,, L., Moner,, D., Maldonado,, J., Kolstrup,, N., & Bellika,, J. (2015). Archetype‐based data warehouse environment to enable the reuse of electronic health record data. International Journal of Medical Informatics, 84, 702–714.
Milani,, R. V., & Franklin,, N. C. (2017). The role of technology in healthy living medicine. Progress in Cardiovascular Diseases, 59(5), 487–491. https://doi.org/10.1016/j.pcad.2017.02.001
Miller,, D., & Brown,, E. (2018). Artificial intelligence in medical practice: The question to the answer? The American Journal of Medicine, 131, 129–133.
Miller,, K., Mosby,, D., Capan,, M., Kowalski,, R., Ratwani,, R., Noaiseh,, Y., … Arnold,, R. (2017). Interface information, interaction: A narrative review of design and functional requirements for clinical decision support. Journal of the American Medical Informatics Association, 25(5), 585–592. https://doi.org/10.1093/jamia/ocx118
Mills,, S., Torrance,, N., & Smith,, B. H. (2016). Identification and management of chronic pain in primary care: A review. Current Psychiatry Reports, 18(2), 22. https://doi.org/10.1007/s11920-015-0659-9
Mitkov,, R. (2005). The Oxford handbook of computational linguistics. Oxford University Press.
Murray,, S., Avati,, A., Schmajuk,, G., & Yazdany,, J. (2019). Automated and flexible identification of complex disease: Building a model for systemic lupus erythematosus using noisy labeling. Journal of the American Medical Informatics Association, 26, 61–65.
Muth, C., Blom, J. W., Smith, S. M., Johnell, K., Gonzalez‐Gonzalez, A. I., Nguyen, T. S., Brueckle, M.‐S., Cesari, M., Tinetti, M. E., Valderas, J. M. (2019). Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: a systematic guideline review and expert consensus. Journal of Internal Medicine, 285(3), 272–288. http://dx.doi.org/10.1111/joim.12842.
Nair,, S., Hsu,, D., & Celi,, L. (2016). Challenges and opportunities in secondary analyses of electronic health record data.
Névéol,, A., Dalianis,, H., Velupillai,, S., Savova,, G., & Zweigenbaum,, P. (2018). Clinical natural language processing in languages other than English: Opportunities and challenges. Journal of Biomedical Semantics, 9, 12.
Nowok, B., Raab, G. M., Dibben, C. (2016). synthpop: Bespoke Creation of Synthetic Data in R. Journal of Statistical Software, 74, (11), 1–26. http://dx.doi.org/10.18637/jss.v074.i11.
Parimbelli,, E., Marini,, S., Sacchi,, L., & Bellazzi,, R. (2018). Patient similarity for precision medicine: A systematic review. Journal of Biomedical Informatics, 83, 87–96.
Peikari,, M., Salama,, S., Nofech‐Mozes,, S., & Martel,, A. (2018). A cluster‐then‐label semi‐supervised learning approach for pathology image classification. Scientific Reports, 8, 7193.
Ratwani,, R., Fairbanks,, T., Savage,, E., Adams,, K., Wittie,, M., Boone,, E., … Gettinger,, A. (2016). Mind the gap. A systematic review to identify usability and safety challenges and practices during electronic health record implementation. Appl Clin Inform, 7, 1069–1087.
Reiner Benaim,, A., Almog,, R., Gorelik,, Y., Hochberg,, I., Nassar,, L., Mashiach,, T., Khamaisi,, M., Lurie,, Y., Azzam,, Z. S., Khoury,, J., Kurnik,, D., & Beyar,, R. (2020). Analyzing medical research results based on synthetic data and their relation to real data results: Systematic comparison from five observational studies. JMIR Medical Informatics, 8(2), e16492. https://doi.org/10.2196/16492 http://medinform.jmir.org/2020/2/e16492/
Ribeiro,, M. T., Singh,, S., & Guestrin,, C. (2016, August). Why should I trust you? In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM. https://doi.org/10.1145/2939672.2939778
Ross,, E., Jung,, K., Dudley,, J., Li,, L., Leeper,, N., & Shah,, N. (2019). Predicting future cardiovascular events in patients with peripheral artery disease using electronic health record data. Circulation. Cardiovascular Quality and Outcomes, 12, e004741.
Saripalle,, R., Runyan,, C., & Russell,, M. (2019). Using HL7 FHIR to achieve interoperability in patient health record. Journal of Biomedical Informatics, 94, 103188.
Scheurwegs,, E., Luyckx,, K., Luyten,, L., Daelemans,, W., & Van,, d. B. T. (2016). Data integration of structured and unstructured sources for assigning clinical codes to patient stays. Journal of the American Medical Informatics Association, 23, e11–e19.
Shao,, Y., Zeng,, Q., Chen,, K., Shutes‐David,, A., Thielke,, S., & Tsuang,, D. (2019). Detection of probable dementia cases in undiagnosed patients using structured and unstructured electronic health records. BMC Medical Informatics and Decision Making, 19, 128.
Sharafoddini,, A., Dubin,, J., & Lee,, J. (2017). Patient similarity in prediction models based on health data: A scoping review. JMIR Medical Informatics, 5, e7.
Sheikhalishahi,, S., Miotto,, R., Dudley,, J., Lavelli,, A., Rinaldi,, F., & Osmani,, V. (2019). Natural language processing of clinical notes on chronic diseases: Systematic review. JMIR Medical Informatics, 7, e12239.
Si,, Y., Wang,, J., Xu,, H., & Roberts,, K. (2019). Enhancing clinical concept extraction with contextual embeddings. Journal of the American Medical Informatics Association, 26, 1297–1304.
Simon,, G., Shortreed,, S., Coley,, R., Penfold,, R., Rossom,, R., Waitzfelder,, B., … Lynch,, F. (2019). Assessing and minimizing re‐identification risk in research data derived from health care records. eGEMs (Washington, DC), 7, 6.
Singh,, R., Kalra,, M. K., Nitiwarangkul,, C., Patti,, J. A., Homayounieh,, F., Padole,, A., Rao,, P., Putha,, P., Muse,, V. V., Sharma,, A., & Digumarthy,, S. R. (2018). Deep learning in chest radiography: Detection of findings and presence of change. PLoS One, 13(10), e0204155. https://doi.org/10.1371/journal.pone.0204155
Sittig,, D. F., Wright,, A., & Middleton,, B. (2016). Clinical decision support: A 25 year retrospective and a 25 year vision. Yearbook of Medical Informatics, 25(S 01), S103–S116. https://doi.org/10.15265/iys-2016-s034
Smedley,, N. F., Ellingson,, B. M., Cloughesy,, T. F., & Hsu,, W. (2018). Longitudinal patterns in clinical and imaging measurements predict residual survival in glioblastoma patients. Scientific Reports, 8(1), 14429. https://doi.org/10.1038/s41598-018-32397-z
Soguero‐Ruiz,, C., Hindberg,, K., Rojo‐Alvarez,, J., Skrovseth,, S., Godtliebsen,, F., Mortensen,, K., … Jenssen,, R. (2016). Support vector feature selection for early detection of anastomosis leakage from bag‐of‐words in electronic health records. IEEE Journal of Biomedical and Health Informatics, 20, 1404–1415.
Spasic,, I., Livsey,, J., Keane,, J., & Nenadic,, G. (2014). Text mining of cancer‐related information: Review of current status and future directions. International Journal of Medical Informatics, 83(9), 605–623.
Sun,, W., Cai,, Z., Li,, Y., Liu,, F., Fang,, S., & Wang,, G. (2018). Data processing and text mining technologies on electronic medical records: A review. Journal of Healthcare Engineering, 2018, 1–9. https://doi.org/10.1155/2018/4302425
Tao,, C., Lee,, K., Filannino,, M., & Uzuner,, O. (2019). An exploratory study on pseudo‐data generation in prescription and adverse drug reaction extraction. Studies in Health Technology and Informatics, 264, 388–392.
Tekkeşin,, A. (2019). Artificial intelligence in healthcare: Past, present and future. Anatolian Journal of Cardiology, 22, 8–9.
Topaz,, M., Radhakrishnan,, K., Lei,, V., & Zhou,, L. (2016). Mining clinicians` electronic documentation to identify heart failure patients with ineffective self‐management: A pilot text‐mining study. Studies in Health Technology and Informatics, 225, 856–857.
Topaz,, M., Murga,, L., Gaddis,, K. M., McDonald,, M. V., Bar‐Bachar,, O., Goldberg,, Y., & Bowles,, K. H. (2019). Mining fall‐related information in clinical notes: Comparison of rule‐based and novel word embedding‐based machine learning approaches. Journal of Biomedical Informatics, 90, 103103. https://doi.org/10.1016/j.jbi.2019.103103
Van Rijsbergen,, C. J. (1979). Information retrieval. Butterworth %26 Co.
Velupillai,, S., Epstein,, S., Bittar,, A., Stephenson,, T., Dutta,, R., & Downs,, J. (2019). Identifying suicidal adolescents from mental health records using natural language processing. Studies in Health Technology and Informatics, 264, 413–417.
Wachter,, S., Mittelstadt,, B., & Russell,, C. (2018). Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harvard Journal of Law and Technology, 31(2), 841–887.
Walonoski,, J., Kramer,, M., Nichols,, J., Quina,, A., Moesel,, C., Hall,, D., Duffett,, C., Dube,, K., Gallagher,, T., & McLachlan,, S. (2018). Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record. Journal of the American Medical Informatics Association, 25, 230–238.
Wang,, F., & Preininger,, A. (2019). AI in health: State of the art, challenges, and future directions. Yearbook of Medical Informatics, 28, 16–26.
Wasylewicz,, A. T. M., & Scheepers‐Hoeks,, A. M. J. W. (2018). Clinical decision support systems. In Fundamentals of clinical data science (pp. 153–169). Springer International Publishing. https://doi.org/10.1007/978-3-319-99713-1-11
Weegar,, R., & Dalianis,, H. (2015). Creating a rule based system for text mining of Norwegian breast cancer pathology reports. In Proceedings of the sixth international workshop in health text mining and information analysis, louhi 2015, held in conjunction with emnlp 2015, Lisbon, Portugal.
Weegar,, R., Nygård,, J. F., & Dalianis,, H. (2017). Efficient encoding of pathology reports using natural language processing. In Proceedings of recent advances in natural language processing, ranlp 2017, Varna, Bulgaria.
White,, C. M., Schmidler,, G. D. S., Butler,, M., Wang,, Z., Robinson,, K., Mitchell,, M. D., … Banez,, L. (2017). Understanding health systems` use of and need for evidence to inform decisionmaking (Tech. Rep.). https://doi.org/10.23970/ahrqepcwhitepaper2
Xiao,, C., Choi,, E., & Sun,, J. (2018). Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review. Journal of the American Medical Informatics Association, 25, 1419–1428.
Yang,, X., Lyu,, T., Li,, Q., Lee,, C.‐Y., Bian,, J., Hogan,, W. R., & Wu,, Y. (2019). A study of deep learning methods for de‐identification of clinical notes in cross‐institute settings. BMC Medical Informatics and Decision Making, 19(S5), 1–9. https://doi.org/10.1186/s12911-019-0935-4
Yang,, Q., Zhang,, Y., Dai,, W., & Pan,, S. J. (2020). Transfer learning. Cambridge University Press.
Ye,, W., Hu,, R., & Enev,, M. (2020, August). Put Deep Learning to Work:Accelerate Deep Learning through Amazon SageMaker and ML Service. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery %26 data mining. ACM. https://doi.org/10.1145/3394486.3406698
Yu,, S. (2016). Big privacy: Challenges and opportunities of privacy study in the age of big data. IEEE Access, 4, 2751–2763. https://doi.org/10.1109/access.2016.2577036
Yu,, K.‐H., Beam,, A. L., & Kohane,, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731. https://doi.org/10.1038/s41551-018-0305-z
Zhang,, Y., Cai,, T., Yu,, S., Cho,, K., Hong,, C., Sun,, J., Huang,, J., Ho,, Y. L., Ananthakrishnan,, A. N., Xia,, Z., Shaw,, S. Y., Gainer,, V., Castro,, V., Link,, N., Honerlaw,, J., Huang,, S., Gagnon,, D., Karlson,, E. W., Plenge,, R. M., … Liao,, K. (2019). High‐throughput phenotyping with electronic medical record data using a common semi‐supervised approach (PheCAP). Nature Protocols, 14, 3426–3444.