Adragni,, K. P., & Cook,, R. D. (2009). Sufficient dimension reduction and prediction in regression. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906), 4385–4405.
Alaa,, A. M., & van der Schaar,, M. (2017). Bayesian inference of individualized treatment effects using multi‐task gaussian processes. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 3424–3432). Curran Associates, Inc.
Allenby,, G. M., Arora,, N., & Ginter,, J. L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. Journal of Marketing Research, 32(2), 152–162.
Anderson,, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. The Annals of Mathematical Statistics, 22(3), 327–351.
Bergstra,, J., & Bengio,, Y. (2012). Random search for hyper‐parameter optimization. The Journal of Machine Learning Research, 13(1), 281–305.
Bolte,, J., Sabach,, S., & Teboulle,, M. (2014). Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1–2), 459–494.
Breheny,, P., & Huang,, J. (2009). Penalized methods for bi‐level variable selection. Statistics and Its Interface, 2(3), 369–380.
Breiman,, L., & Friedman,, J. H. (1997). Predicting multivariate responses in multiple linear regression. Journal of the Royal Statistical Society: Series B, 59(1), 3–54.
Cao,, X., Wei,, X., Han,, Y., Yang,, Y., & Lin,, D. (2013). Robust tensor clustering with non‐greedy maximization. In Proceedings of Twenty‐Third International Joint Conference on Artificial Intelligence. AAAI Press.
Caruna,, R. (1997). Multitask learning. Machine Learning, 28, 41–75.
Chamberlain,, G. (1982). Multivariate regression models for panel data. Journal of Econometrics, 18(1), 5–46.
Chen,, G. K., Chi,, E. C., Ranola,, J. M. O., & Lange,, K. (2015). Convex clustering: An attractive alternative to hierarchical clustering. PLoS Computational Biology, 11(5), e1004228.
Chen,, J., Tran‐Dinh,, Q., Kosorok,, M. R., & Liu,, Y. (2020). Identifying heterogeneous effect using latent supervised clustering with adaptive fusion. Journal of Computational and Graphical Statistics, 1–31 in press. https://doi.org/10.1080/10618600.2020.1763808.
Chen,, L., & Huang,, J. Z. (2016). Sparse reduced‐rank regression with covariance estimation. Statistics and Computing, 26(1–2), 461–470.
Chen,, S., & Banerjee,, A. (2017). Alternating estimation for structured high‐dimensional multi‐response models. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 2838–2848). Curran Associates, Inc.
Chen,, Y., Iyengar,, R., & Iyengar,, G. (2016). Modeling multimodal continuous heterogeneity in conjoint analysis—A sparse learning approach. Marketing Science, 36(1), 140–156.
Chi,, E. C., Gaines,, B. J., Sun,, W. W., Zhou,, H., & Yang,, J. (2020). Provable convex co‐clustering of tensors. Journal of Machine Learning Research, 21(214), 1–58.
Chi,, E. C., & Lange,, K. (2015). Splitting methods for convex clustering. Journal of Computational and Graphical Statistics, 24(4), 994–1013.
Cook,, R. D., Forzani,, L., & Rothman,, A. J. (2013). Prediction in abundant high‐dimensional linear regression. Electronic Journal of Statistics, 7, 3059–3088.
Cook,, R. D., Helland,, I. S., & Su,, Z. (2013). Envelopes and partial least squares regression. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75(5), 851–877.
Danaher,, P., Wang,, P., & Witten,, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society, 76(2), 373–397.
d`Aspermont,, A., Banerjee,, O., & Ghaoui,, L. E. (2008). First‐order methods for sparse covariance selection. SIAM Journal of Matrix Analysis and Applications, 30(1), 56–66.
Fan,, J., & Li,, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348–1360.
Fraley,, C., & Raftery,, A. (2002). Model based clustering, discriminant analysis, and density estimation. Journal of American Statistical Association, 97(458), 611–632.
Fränti,, P., & Sieranoja,, S. (2019). How much can k‐means be improved by using better initialization and repeats? Pattern Recognition, 93, 95–112.
Friedman,, J., Hastie,, T., & Tibshirani,, R. (2007). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.
Friedman,, J., Hastie,, T., & Tibshirani,, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.
Golub,, T. R., Slonim,, D. K., Tamayo,, P., Huard,, C., Gaasenbeek,, M., Mesirov,, J. P., Coller,, H., Loh,, M. L., Downing,, J. R., & Caligiuri,, M. A. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531–537.
Gospodinov,, N., Kan,, R., & Robotti,, C. (2017). Spurious inference in reduced‐rank asset‐pricing models. Econometrica, 85(5), 1613–1628.
Green,, P. E., Krieger,, A. M., & Wind,, Y. (2001). Thirty years of conjoint analysis: Reflections and prospects. Interfaces, 31(3_supplement), S56–S73.
Green,, P. E., & Srinivasan,, V. (1978). Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research, 5(2), 103–123.
Guo,, J., Levina,, E., Michailidis,, G., & Zhu,, J. (2011). Joint estimation of multiple graphical models. Biometrika, 98(1), 1–15.
Hao,, B., Sun,, W. W., Liu,, Y., & Cheng,, G. (2018). Simultaneous clustering and estimation of heterogeneous graphical models. Journal of Machine Learning Research, 18(217), 1–58.
Hao,, N., Feng,, Y., & Zhang,, H. H. (2018). Model selection for high‐dimensional quadratic regression via regularization. Journal of the American Statistical Association, 113(522), 615–625.
Hartigan,, J. A., & Wong,, M. A. (1979). Algorithm as 136: A k‐means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.
Hastie,, T., Tibshirani,, R., Botstein,, D., & Brown,, P. (2001). Supervised harvesting of expression trees. Genome Biology, 2(1), research0003–1.https://genomebiology.biomedcentral.com/articles/10.1186/gb-2001-2-1-research0003.
Hocking,, T. D., Joulin,, A., Bach,, F., & Vert,, J.‐P. (2011). Clusterpath: An algorithm for clustering using convex fusion penalties. In Proceedings of the 28th International Conference on International Conference on Machine Learning (pp. 745–752). Omnipress.
Hoerl,, A. E., & Kennard,, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67.
Höppner,, F., Klawonn,, F., Kruse,, R., & Runkler,, T. (1999). Fuzzy cluster analysis: Methods for classification, data analysis and image recognition. John Wiley %26 Sons.
Huang,, J., Ma,, S., Li,, H., & Zhang,, C.‐H. (2011). The sparse laplacian shrinkage estimator for high‐dimensional regression. Annals of Statistics, 39(4), 2021–2046.
Izenman,, A. J. (1975). Reduced‐rank regression for the multivariate linear model. Journal of Multivariate Analysis, 5(2), 248–264.
Kapp,, V., May,, M. C., Lanza,, G., & Wuest,, T. (2020). Pattern recognition in multivariate time series: Towards an automated event detection method for smart manufacturing systems. Journal of Manufacturing and Materials Processing, 4(3), 88.
Kaufman,, L., & Rousseeuw,, P. J. (2009). Finding groups in data: An introduction to cluster analysis (Vol. 344). John Wiley %26 Sons.
Kim,, S., & Xing,, E. P. (2009). Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genetics, 5(8), e1000587.
Kim,, S., & Xing,, E. P. (2012). Tree‐guided group lasso for multi‐response regression with structured sparsity, with an application to eqtl mapping. The Annals of Applied Statistics, 6(3), 1095–1117.
Krishna,, K., & Murty,, M. N. (1999). Genetic k‐means algorithm. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 20(3), 433–439.
Lee,, S., & Xing,, E. P. (2012). Leveraging input and output structures for joint mapping of epistatic and marginal eqtls. Bioinformatics, 28(12), i137–i146.
Lee,, S., Zhu,, J., & Xing,, E. P. (2010). Adaptive multi‐task lasso: With application to eqtl detection. In Advances in Neural Information Processing Systems (pp. 1306–1314). Curran Associates, Inc.
Lee,, W., & Liu,, Y. (2012). Simultaneous multiple response regression and inverse covariance matrix estimation via penalized gaussian maximum likelihood. Journal of Multivariate Analysis, 111, 241–255.
Li,, C., & Li,, H. (2008). Network‐constrained regularization and variable selection of genomic data. Bioinformatics, 24(9), 1175–1182.
Li,, C., & Li,, H. (2010). Variable selection and regression analysis for graph‐structure covariates with an application to geneomics. The Annals of Applied Statistics, 4(3), 1498–1516.
Li,, L., & Zhang,, X. (2017). Parsimonious tensor response regression. Journal of the American Statistical Association, 112(519), 1131–1146.
Li,, T., Levina,, E., & Zhu,, J. (2019). Prediction models for network‐linked data. The Annals of Applied Statistics, 13(1), 132–164.
Li,, T., Qian,, C., Levina,, E., & Zhu,, J. (2020). High‐dimensional gaussian graphical models on network‐linked data. Journal of Machine Learning Research, 21(74), 1–45.
Liu,, J., & Calhoun,, V. (2014). A review of multivariate analyses in imaging genetics. Frontiers in Neuroinformatics, 8, 29.
Lock,, E. F. (2018). Tensor‐on‐tensor regression. Journal of Computational and Graphical Statistics, 27(3), 638–647.
Loh,, P.‐L., & Wainwright,, M. J. (2012). Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses. In Advances in Neural Information Processing Systems (pp. 2087–2095). Curran Associates, Inc.
Ma,, S., & Huang,, J. (2017). A concave pairwise fusion approach to subgroup analysis. Journal of the American Statistical Association, 112(517), 410–423.
Negahban,, S. N., & Wainwright,, M. J. (2011). Simultaneous support recovery in high dimensions: Benefits and perils of block ℓ1 − ℓ∞‐regularization. IEEE Transactions on Information Theory, 57(6), 3841–3863.
Obozinski,, G., Taskar,, B., & Jordan,, M. I. (2010). Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20(2), 231–252.
Peng,, J., Zhu,, J., Beramaschi,, A., Han,, W., Noh,, D.‐Y., Pollac,, J. R., & Wang,, P. (2010). Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Annals of Applied Statistics, 4(1), 53–77.
Price,, B. S., Geyer,, C. J., & Rothman,, A. J. (2015). Ridge fusion in statistical learning. Journal of Computational and Graphical Statistics, 24(2), 439–454.
Price,, B. S., Geyer,, C. J., & Rothman,, A. J. (2019). Automatic response category combination in multinomial logistic regression. Journal of Computational and Graphical Statistics, 28(3), 758–766.
Price,, B. S., & Sherwood,, B. (2018). A cluster elastic net for multivariate regression. Journal of Machine Learning Research, 19, 1–37.
Qin,, Z., & Goldfarb,, D. (2012). Structured sparsity via alternating direction methods. The Journal of Machine Learning Research, 13, 1435–1468.
Rabusseau,, G., & Kadri,, H. (2016). Low‐rank regression with tensor responses. In Advances in Neural Information Processing Systems (pp. 1867–1875). Curran Associates, Inc.
Raftery,, A. E., & Dean,, N. (2006). Variable selection for model‐based clustering. Journal of the American Statistical Association, 101(473), 168–178.
Rai,, P., Kumar,, A., & Daume,, H. (2012). Simultaneously leveraging output and task structures for multiple‐output regression. In F. Pereira,, C. J. C. Burges,, L. Bottou,, & K. Q. Weinberger, (Eds.), Advances in Neural Information Processing Systems (Vol. 25, pp. 3185–3193). Curran Associates Inc..
Rhyne,, J., Jeng,, X. J., Chi,, E. C., & Tzeng,, J.‐Y. (2020). Fastlors: Joint modelling for expression quantitative trait loci mapping in r. Stat, 9(1), e265.
Rothman,, A. J., Levina,, E., & Zhu,, J. (2010). Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics, 19(4), 947–962.
Saegusa,, T., & Shojaie,, A. (2016). Joint estimation of precision matrices in heterogeneous populations. Electronics Journal of Statistics, 10(1), 1341–1392.
Sofer,, T., Dicker,, L., & Lin,, X. (2014). Variable selection for high dimensional multivariate outcomes. Statistica Sinica, 24(4), 1633–1654.
Stahl,, D., & Sallis,, H. (2012). Model‐based cluster analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 4(4), 341–358.
Sun,, W., Wang,, J., & Fang,, Y. (2012). Regularized k‐means clustering of high‐dimensional data and its asymptotic consistency. Electronics Journal of Statistics, 6, 148–167.
Sun,, W. W., & Li,, L. (2017). Store: Sparse tensor response regression and neuroimaging analysis. The Journal of Machine Learning Research, 18(1), 4908–4944.
Sun,, W. W., & Li,, L. (2019). Dynamic tensor clustering. Journal of the American Statistical Association, 114(528), 1894–1907.
Tan,, K. M., Witten,, D., & Shaojaie,, A. (2015). The cluster graphical lasso for improved estimation of guassian graphical models. Computational Statistics and Data Analysis, 85, 23–36.
Tibshirani,, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58(1), 267–288.
Tibshirani,, R., Walther,, G., & Hastie,, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411–423.
Turlach,, B. A., Venables,, W. N., & Wright,, S. J. (2005). Simultaneous variable selection. Technometrics, 47(3), 349–363.
Velu,, R., & Reinsel,, G. C. (2013). Multivariate reduced‐rank regression: Theory and applications (Vol. 136). Springer Science %26 Business Media.
Witten,, D., Friedman,, J., & Simon,, N. (2011). New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics, 20, 892–900.
Witten,, D., & Tibshirani,, R. (2009). Covariance regularized regression and classification for high‐dimensional problems. Journal of Royal Statistical Society, Series B, 71(3), 615–636.
Witten,, D. M., Shojaie,, A., & Zhang,, F. (2014). The cluster elastic net for high‐dimensional regression with unknown variable grouping. Technometrics, 56(1), 112–122.
Witten,, D. M., & Tibshirani,, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105(490), 713–726 PMID: 20811510.
Wu,, T., Benson,, A. R., & Gleich,, D. F. (2016). General tensor spectral co‐clustering for higher‐order data. Advances in Neural Information Processing Systems, 29, 2559–2567.
Wu,, T. T., & Lange,, K. (2008). Coordinate descent algorithms for lasso penalized regression. The Annals of Applied Statistics, 2(1), 224–244.
Xu,, L., Huang,, A., Chen,, J., & Chen,, E. (2015). Exploiting task‐feature co‐clusters in multi‐task learning. In Twenty‐Ninth AAAI Conference on Artificial Intelligence. AAAI Press.
Xu,, R., & Wunsch,, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.
Yang,, C., Wang,, L., Zhang,, S., & Zhao,, H. (2013). Accounting for non‐genetic factors by low‐rank representation and sparse regression for eqtl mapping. Bioinformatics, 29(8), 1026–1034.
Yuan,, M., Ekici,, A., Lu,, Z., & Monteiro,, R. (2007). Dimension reduction and coefficient estimation in multivariate linear regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(3), 329–346.
Yuan,, M., & Lin,, Y. (2005). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B, 68(1), 49–67.
Yuan,, M., & Lin,, Y. (2007). Model selection and estimation in the guassian graphical model. Biometrika, 94(1), 19–35.
Zhao,, S., & Shojaie,, A. (2016). A significance test for graph constrained estimation. Biometrics, 72(2), 484–493.
Zhu,, Y. (2020). A convex optimization formulation for multivariate regression. In Andvances in Neural Information Processing Systems 33 pre‐proceedings (NeurlIPS 2020). Curran Associates, Inc.
Zou,, H., & Hastie,, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B, 67, 301–320.