Abay,, N. C., Akcora,, C. G., Gel,, Y. R., Kantarcioglu,, M., Islambekov,, U. D., Tian,, Y., & Thuraisingham,, B. (2019). Chainnet: Learning on blockchain graphs with topological features. In *2019 IEEE international conference on data mining (ICDM)* (pp. 946–951).

Abbe,, E. (2018). Community detection and stochastic block models: Recent developments. Journal of Machine Learning Research, 18, 1–86.

Afsarmanesh,, N., & Magnani,, M. (2016). Finding overlapping communities in multiplex networks. *CoRR*, abs/1602.03746.

Agarwal,, A., Marwan,, N., Rathinasamy,, M., Merz,, B., & Kurths,, J. (2017). Multiscale complex network analysis: An approach to study spatiotemporal rainfall pattern in Germany. In *European Geophysical Union*.

Agasse‐Duval,, M., & Lawford,, S. (2018). *Subgraphs and motifs in a dynamic airline network*. arXiv preprint arXiv:1807.02585.

Ahmed,, N. K., Neville,, J., Rossi,, R. A., Duffield,, N., & Willke,, T. L. (2016). Graphlet decomposition: Framework, algorithms, and applications. Knowledge and Information Systems (KAIS), 50, 1–32.

Aicher,, C., Jacobs,, A. Z., & Clauset,, A. (2014). Learning latent block structure in weighted networks. Journal of Complex Networks, 3, 221–248.

Airoldi,, E. M., Blei,, D. M., Fienberg,, S. E., & Xing,, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 1981–2014.

Akcora,, C. G., Dixon,, M. F., Gel,, Y. R., & Kantarcioglu,, M. (2019). Blockchain data analytics. Intelligent Informatics, 20(1), 1–7.

Akcora,, C. G., Gel,, Y. R., & Kantarcioglu,, M. (2020). *Blockchain: A graph primer*. arXiv:1708.08749.

Akcora,, C. G., Li,, Y., Gel,, Y. R., & Kantarcioglu,, M. (2020). BitcoinHeist: Topological data analysis for ransomware detection on the bitcoin blockchain. In *International joint conference on artificial intelligence (IJCAI)*.

Akcora,, C. G., Purusotham,, S., Gel,, Y. R., Krawiec‐Thayer,, M., & Kantarcioglu,, M. (2020). *How to not get caught when you launder money on blockchain*? arXiv:2010.15082.

Al‐sharoa,, E., Al‐khassaweneh,, M., & Aviyente,, S. (2019). Tensor based temporal and multilayer community detection for studying brain dynamics during resting state fmri. IEEE Transactions on Biomedical Engineering, 66, 695–709.

Alvari,, H., Hajibagheri,, A., & Sukthankar,, G. (2014). Community detection in dynamic social networks: A game‐theoretic approach. In *Proceedings of the 2014 IEEE/ACM international conference on advances in social networks analysis and mining* (pp. 101–107). IEEE Press.

Amelio,, A., Mangioni,, G., & Tagarelli,, A. (2020). Modularity in multilayer networks using redundancy‐based resolution and projection‐based inter‐layer coupling. IEEE Transactions on Network Science and Engineering, 7, 1198–1214.

Amini,, A. A., Chen,, A., Bickel,, P. J., & Levina,, E. (2013). Pseudo‐likelihood methods for community detection in large sparse networks. The Annals of Statistics, 41, 2097–2122.

Amini,, A. A., & Levina,, E. (2018). On semidefinite relaxations for the block model. The Annals of Statistics, 46, 149–179.

Anandkumar,, A., Ge,, R., Hsu,, D., Kakade,, S. M., & Telgarsky,, M. (2014). Tensor decompositions for learning latent variable models. Journal of Machine Learning Research, 15, 2773–2832.

Arenas,, A., Fernández,, A., Fortunato,, S., & Gomez,, S. (2008). Motif‐based communities in complex networks. Journal of Physics A: Mathematical and Theoretical, 41, 224001.

Arenas,, A., Fernández,, A., & Gomez,, S. (2008). Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10, 053039.

Arinik,, N., Figueiredo,, R., & Labatut,, V. (2020). Multiple partitioning of multiplex signed networks: Application to European parliament votes. Social Networks, 60, 83–102.

Ashourvan,, A., Telesford,, Q. K., Verstynen,, T., Vettel,, J. M., & Bassett,, D. S. (2019). Multi‐scale detection of hierarchical community architecture in structural and functional brain networks. PLoS One, 14, 1–36.

Aynaud,, T., & Guillaume,, J.‐L. (2011). Multi‐step community detection and hierarchical time segmentation in evolving networks. In *Proceedings of the 5th SNA‐KDD workshop*.

Bachmann,, I., Bustos,, J., & Bustos,, B. (2020). A survey on frameworks used for robustness analysis on interdependent networks. Complexity, 2020, 1–17.

Bandyopadhyay,, S., & Coyle,, E. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In *IEEE INFOCOM 2003. Twenty‐second annual joint conference of the IEEE computer and communications societies (IEEE Cat. No. 03CH37428)* (Vol. 3, pp. 1713–1723).

Banerjee,, S., Akbani,, R., & Baladandayuthapani,, V. (2019). Spectral clustering via sparse graph structure learning with application to proteomic signaling networks in cancer. Computational Statistics %26 Data Analysis, 132, 46–69 (Special issue on Biostatistics).

Bansal,, S., Bhowmick,, S., & Paymal,, P. (2011). Fast community detection for dynamic complex networks. In Complex networks (pp. 196–207). Springer.

Barbillon,, P., Donnet,, S., Lazega,, E., & Bar‐Hen,, A. (2017). Stochastic block models for multiplex networks: An application to a multilevel network of researchers. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180, 295–314.

Baruri,, R., Ghosh,, A., Chanda,, S., Banerjee,, R., Das,, A., Mandal,, A., & Halder,, T. (2019). A comparative study on *k*‐means clustering method and analysis. In *International conference on emerging technologies in computer engineering* (pp. 113–127).

Battiston,, F., Nicosia,, V., Chavez,, M., & Latora,, V. (2017). Multilayer motif analysis of brain networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 047404.

Bazzi,, M., Porter,, M. A., Williams,, S., McDonald,, M., Fenn,, D. J., & Howison,, S. D. (2016). Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Modeling %26 Simulation, 14, 1–41.

Bedi,, P., & Sharma,, C. (2016). Community detection in social networks. WIREs Data Mining %26 Knowledge Discovery, 6, 115–135.

Benson,, A. R., Gleich,, D. F., & Leskovec,, J. (2016). Higher‐order organization of complex networks. Science, 353, 163–166.

Berge,, C. (1985). Graphs and hypergraphs. Elsevier Science Ltd.

Berlingerio,, M., Coscia,, M., & Giannotti,, F. (2011). Finding and characterizing communities in multidimensional networks. In *2011 international conference on advances in social networks analysis and mining* (pp. 490–494).

Berlingerio,, M., Pinelli,, F., & Calabrese,, F. (2013). ABACUS: Frequent pattern mining‐based community discovery in multidimensional networks. Data Mining and Knowledge Discovery, 27, 294–320.

Betzel,, R. F., & Bassett,, D. S. (2017). Multi‐scale brain networks. NeuroImage, 160, 73–83.

Betzel,, R. F., Fukushima,, M., He,, Y., Zuo,, X.‐N., & Sporns,, O. (2016). Dynamic fluctuations coincide with periods of high and low modularity in resting‐state functional brain networks. NeuroImage, 127, 287–297.

Betzel,, R. F., Griffa,, A., Avena‐Koenigsberger,, A., Goñi,, J., Thiran,, J.‐P., Hagmann,, P., & Sporns,, O. (2013). Multi‐scale community organization of the human structural connectome and its relationship with resting‐state functional connectivity. Network Science, 1, 353–373.

Bhattacharyya,, S., & Bickel,, P. J. (2016). Spectral clustering and block models: A review and a new algorithm. In A. Frigessi,, P. Bühlmann,, I. K. Glad,, M. Langaas,, S. Richardson,, & M. Vannucci, (Eds.), Statistical analysis for high‐dimensional data (pp. 67–90). Springer International Publishing.

Bickel,, P. J., & Sarkar,, P. (2016). Hypothesis testing for automated community detection in networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78, 253–273.

Blondel,, V. D., Guillaume,, J.‐L., Lambiotte,, R., & Lefebvre,, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008.

Bóta,, A., Krész,, M., & Pluhár,, A. (2011). Dynamic communities and their detection. Acta Cybernetica, 20, 35–52.

Bourqui,, R., Gilbert,, F., Simonetto,, P., Zaidi,, F., Sharan,, U., & Jourdan,, F. (2009). Detecting structural changes and command hierarchies in dynamic social networks. In *2009 International conference on advances in social network analysis and mining* (pp. 83–88). IEEE.

Bretto,, A. (2013). Hypergraph theory: An introduction. Springer Publishing Company, Incorporated.

Bródka,, P., Saganowski,, S., & Kazienko,, P. (2013). GED: The method for group evolution discovery in social networks. Social Network Analysis and Mining, 3, 1–14.

Bron,, C., & Kerbosch,, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16, 575–577.

Brumback,, T., Castro,, N., Jacobus,, J., & Tapert,, S. (2016). Effects of marijuana use on brain structure and function: Neuroimaging findings from a neurodevelopmental perspective. International Review of Neurobiology, 129, 33–65.

Brzoska,, L., Fischer,, M., & Lentz,, H. H. K. (2020). Hierarchical structures in livestock trade networks—A stochastic block model of the German cattle trade network. Frontiers in Veterinary Science, 7, 281.

Thang Bui,, Chaudhuri,, S., Leighton,, T., & Sipser,, M. (1984). Graph bisection algorithms with good average case behavior. In *25th annual symposium on foundations of computer science* (pp. 181–192).

Burgess,, M., Adar,, E., & Cafarella,, M. (2016). Link‐prediction enhanced consensus clustering for complex networks. PLoS One, 11, 1–23.

Cai,, T. T., & Li,, X. (2015). Robust and computationally feasible community detection in the presence of arbitrary outlier nodes. The Annals of Statistics, 43, 1027–1059.

Cao,, Y., & Chen,, D. (2012). Generalization errors of Laplacian regularized least squares regression. Science China Mathematics, 55, 1859–1868.

Cao,, Y., & Chen,, D.‐R. (2011). Consistency of regularized spectral clustering. Applied and Computational Harmonic Analysis, 30, 319–336.

Cazabet,, R., & Amblard,, F. (2014). Dynamic community detection. In Encyclopedia of social network analysis and mining (pp. 404–414). Springer.

Celisse,, A., Daudin,, J.‐J., & Pierre,, L. (2012). Consistency of maximum‐likelihood and variational estimators in the stochastic block model. Electronic Journal of Statistics, 6, 1847–1899.

Chen,, K., & Lei,, J. (2018). Network cross‐validation for determining the number of communities in network data. Journal of the American Statistical Association, 113, 241–251.

Chen,, Y., Kamath,, G., Suh,, C., & Tse,, D. (2016). Community recovery in graphs with locality. In *International conference on machine learning* (pp. 689–698).

Chen,, Y., Li,, X., & Xu,, J. (2018). Convexified modularity maximization for degree‐corrected stochastic block models. The Annals of Statistics, 46, 1573–1602.

Chien,, I., Lin,, C.‐Y., and Wang,, I.‐H. (2018). Community detection in hypergraphs: Optimal statistical limit and efficient algorithms. In *International conference on artificial intelligence and statistics* (pp. 871–879).

Chodrow,, P., & Mellor,, A. (2020). Annotated hypergraphs: Models and applications. Applied Network Science, 5, 9.

Chung,, F., & Lu,, L. (1997). Spectral graph theory. American Mathematical Society.

Clauset,, A. (2013). Lecture notes in network analysis and modeling. Santa Fe Institute.

Clauset,, A., Newman,, M. E. J., & Moore,, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.

Combe,, D., Largeron,, C., Jeudy,, B., Fogelman‐Soulié,, F., & Wang,, J. (2020). Attributed networks partitioning based on modularity optimization, chap. 8 (pp. 169–185). John Wiley %26 Sons, Ltd.

Côme,, E., Latouche,, P., Jouvin,, N., & Bouveyron,, C. (2020). *Hierarchical clustering with discrete latent variable models and the integrated classification likelihood*. arXiv preprint arXiv:2002.11577.

Contisciani,, M., Power,, E., & De Bacco,, C. (2020). Community detection with node attributes in multilayer networks. Scientific Reports, 10, 15736.

Corneli,, M., Latouche,, P., & Rossi,, F. (2016). Exact ICL maximization in a non‐stationary temporal extension of the stochastic block model for dynamic networks. Neurocomputing, 192, 81–91.

Cuesta‐Albertos,, J. A., Febrero‐Bande,, M., & de la Fuente,, M. O. (2017). The *DD*^{g}‐classifier in the functional setting. Test, 26, 119–142.

Dafir,, Z., Lamari,, Y., & Slaoui,, S. C. (2020). A survey on parallel clustering algorithms for big data. Artificial Intelligence Review, 54, 2411–2443.

Dakiche,, N., Tayeb,, F. B.‐S., Slimani,, Y., & Benatchba,, K. (2019). Tracking community evolution in social networks: A survey. Information Processing %26 Management, 56, 1084–1102.

Dall`Amico,, L., Couillet,, R., & Tremblay,, N. (2020). Optimal Laplacian regularization for sparse spectral community detection. In *ICASSP 2020 – 2020 IEEE international conference on acoustics, speech and signal processing (ICASSP)* (pp. 3237–3241).

Damle,, A., Minden,, V., & Ying,, L. (2018). Simple, direct and efficient multi‐way spectral clustering. Information and Inference: A Journal of the IMA, 8, 181–203.

De Domenico,, M., Granell,, C., Porter,, M., & Arenas,, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12, 901–906.

De Domenico,, M., Lancichinetti,, A., Arenas,, A., & Rosvall,, M. (2015). Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Physical Review X, 5, 011027.

DeFord,, D. R., & Pauls,, S. D. (2019). Spectral clustering methods for multiplex networks. Physica A: Statistical Mechanics and its Applications, 533, 121949.

Dey,, A., Gel,, Y. R., & Poor,, H. V. (2017). Intentional islanding of power grids with data depth. *In 2017 IEEE 7th international workshop on computational advances in multi‐sensor adaptive processing (CAMSAP)* (pp. 1–5).

Dey,, A. K., Akcora,, C., Gel,, Y., & Kantarcioglu,, M. (2020). On the role of local blockchain network features in cryptocurrency price formation: Local network features in cryptocurrency price analysis. Canadian Journal of Statistics, 48, 561–581.

Dey,, A. K., Gel,, Y. R., & Poor,, H. V. (2019). What network motifs tell us about resilience and reliability of complex networks. Proceedings of the National Academy of Sciences of the United States of America, 116, 19368–19373.

Duan,, D., Li,, Y., Jin,, Y., & Lu,, Z. (2009). Community mining on dynamic weighted directed graphs. In *Proceedings of the 1st ACM international workshop on complex networks meet information %26 knowledge management* (pp. 11–18). ACM.

Estrada,, E., & Rodríguez‐Velázquez,, J. A. (2006). Subgraph centrality and clustering in complex hyper‐networks. Physica A: Statistical Mechanics and its Applications, 364, 581–594.

Faskowitz,, J., Yan,, X., Zuo,, X.‐N., & Sporns,, O. (2018). Weighted stochastic block models of the human connectome across the life span. Scientific Reports, 8, 12997.

Filbey,, F. M., Aslan,, S., Calhoun,, V. D., Spence,, J. S., Damaraju,, E., Caprihan,, A., & Segall,, J. (2014). Long‐term effects of marijuana use on the brain. Proceedings of the National Academy of Sciences of the United States of America, 111, 16913–16918.

Fortunato,, S. (2010). Community detection in graphs. Physics Reports, 486, 75–174.

Fortunato,, S., & Barthélemy,, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, 104, 36–41.

Fortunato,, S., & Hric,, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44.

Fügenschuh,, M., Gera,, R., & Tagarelli,, A. (2021). Topological analysis of synthetic models for air transportation multilayer networks. In R. M. Benito,, C. Cherifi,, H. Cherifi,, E. Moro,, L. M. Rocha,, & M. Sales‐Pardo, (Eds.), Complex networks %26 their applications IX (pp. 206–217). Springer International Publishing.

Funke,, T., & Becker,, T. (2019). Stochastic block models: A comparison of variants and inference methods. PLoS One, 14, 1–40.

Gao,, C., Ma,, Z., Zhang,, A. Y., & Zhou,, H. H. (2018). Community detection in degree‐corrected block models. The Annals of Statistics, 46, 2153–2185.

Gao,, J., Zhao,, Q., Ren,, W., Swami,, A., Ramanathan,, R., & Bar‐Noy,, A. (2015). Dynamic shortest path algorithms for hypergraphs. IEEE/ACM Transactions on Networking, 23, 1805–1817.

Gao,, Y., Wang,, M., Tao,, D., Ji,, R., & Dai,, Q. (2012). 3‐D object retrieval and recognition with hypergraph analysis. IEEE Transactions on Image Processing, 21, 4290–4303.

Gao,, Z.‐K., Yang,, Y.‐X., Zhai,, L.‐S., Weidong,, D., Yu,, J.‐L., & Jin,, N. (2016). Multivariate multiscale complex network analysis of vertical upward oil‐water two‐phase flow in a small diameter pipe. Scientific Reports, 6, 20052.

Garcia,, C. (2016). Boclust: Bootstrap clustering stability algorithm for community detection. PLoS One, 11, 1–15.

Garcia,, J. O., Ashourvan,, A., Muldoon,, S., Vettel,, J. M., & Bassett,, D. S. (2018). Applications of community detection techniques to brain graphs: Algorithmic considerations and implications for neural function. Proceedings of the IEEE, 106, 846–867.

García‐Escudero,, L. A., & Gordaliza,, A. (1999). Robustness properties of *k* means and trimmed *k* means. Journal of the American Statistical Association, 94, 956–969.

Ghasemian,, A., Hosseinmardi,, H., & Clauset,, A. (2019). Evaluating overfit and underfit in models of network community structure. IEEE Transactions on Knowledge and Data Engineering., 32, 1.

Ghasemian,, A., Zhang,, P., Clauset,, A., Moore,, C., & Peel,, L. (2016). Detectability thresholds and optimal algorithms for community structure in dynamic networks. Physical Review X, 6, 031005.

Girvan,, M., & Newman,, M. E. J. (2002). Community structure in social and biological networks. PNAS, 99, 7821–7826.

Goldsmith,, D., Grauer,, K., & Shmalo,, Y. (2020). Analyzing hack subnetworks in the bitcoin transaction graph. Applied Network Science, 5, 1–20.

Görke,, R., Maillard,, P., Staudt,, C., & Wagner,, D. (2010). Modularity‐driven clustering of dynamic graphs. In International symposium on experimental algorithms (pp. 436–448). Springer.

Grossman,, J., & Ion,, P. (1995). On a portion of the well‐known collaboration graph. Congressus Numerantium, 108, 129–131.

Guédon,, O., & Vershynin,, R. (2016). Community detection in sparse networks via Grothendieck`s inequality. Probability Theory and Related Fields, 165, 1025–1049.

Gulikers,, L., Lelarge,, M., & Massoulié,, L. (2017). A spectral method for community detection in moderately sparse degree‐corrected stochastic block models. Advances in Applied Probability, 49, 686–721.

Hao,, Y., Wang,, Q., Duan,, Z., & Chen,, G. (2019). Controllability of Kronecker product networks. Automatica, 110, 108597.

Hartwell,, L., Hopfield,, J., Leibler,, S., & Murray,, A. (1999). From molecular to modular cell biology. Nature, 402, C47–C52.

He,, Z., Liang,, H., Chen,, Z., Zhao,, C., & Liu,, Y. (2020). Computing exact *p*‐values for community detection. Data Mining and Knowledge Discovery, 34, 833–869.

Helal,, N. A., Ismail,, R. M., Badr,, N. L., & Mostafa,, M. G. M. (2017). Leader‐based community detection algorithm for social networks. WIREs Data Mining and Knowledge Discovery, 7, e1213.

Hidalgo,, S. J. T., & Ma,, S. (2018). Clustering multilayer omics data using MuNCut. BMC Genomics, 19, 1–13.

Holland,, P. W., Laskey,, K. B., & Leinhardt,, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5, 109–137.

Hollocou,, A., Bonald,, T., & Lelarge,, M. (2019). Modularity‐based sparse soft graph clustering. In *AISTATS 2019 – 22nd international conference on artificial intelligence and statistics*. Naha, Okinawa, Japan.

Holme,, P., & Saramäki,, J. (2012). Temporal networks. Physics Reports, 519, 97–125.

Holzinger,, A., Haibe‐Kains,, B., & Jurisica,, I. (2019). Why imaging data alone is not enough: AI‐based integration of imaging, omics, and clinical data. European Journal of Nuclear Medicine and Molecular Imaging, 46, 2722–2730.

Hua,, J., Yu,, J., & Yang,, M.‐S. (2020). Fast clustering for signed graphs based on random walk gap. Social Networks, 60, 113–128.

Huang,, L., Wang,, C.‐D., & Chao,, H.‐Y. (2019). Higher‐order multi‐layer community detection. In *AAAI*.

Huffman,, D. A. (1952). A method for the construction of minimum‐redundancy codes. Proceedings of the Institute of Radio Engineers, 40, 1098–1101.

Huo,, J., Weng,, J., & Qu,, H. (2019). A parallel clustering algorithm for logs data based on Hadoop platform. In *Proceedings of the 3rd international conference on high performance compilation, computing and communications* (pp. 90–94).

Hurd,, Y. L., Manzoni,, O. J., Pletnikov,, M. V., Lee,, F. S., Bhattacharyya,, S., & Melis,, M. (2019). Cannabis and the developing brain: Insights into its long‐lasting effects. Journal of Neuroscience, 39, 8250–8258.

Jasiński,, M., Sikorski,, T., Leonowicz,, Z., Borkowski,, K., & Jasińska,, E. (2020). The application of hierarchical clustering to power quality measurements in an electrical power network with distributed generation. Energies, 13, 2407.

Joseph,, A., & Yu,, B. (2016). Impact of regularization on spectral clustering. Annals of Statistics, 44, 1765–1791.

Jourdan,, M., Blandin,, S., Wynter,, L., & Deshpande,, P. (2018). Characterizing entities in the bitcoin blockchain. In *2018 IEEE international conference on data mining workshops (ICDMW)* (pp. 55–62). IEEE.

Karaaslanli,, A., & Aviyente,, S. (2020). Constrained spectral clustering for dynamic community detection. In *ICASSP 2020 – 2020 IEEE international conference on acoustics, speech and signal processing (ICASSP)* (pp. 8474–8478).

Karrer,, B., & Newman,, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Physical Review E, 83, 016107.

Kernighan,, B. W., & Lin,, S. (1970). An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49, 291–307.

Kim,, M., & Leskovec,, J. (2010). Multiplicative attribute graph model of real‐world networks. In R. Kumar, & D. Sivakumar, (Eds.), Algorithms and models for the web‐graph (pp. 62–73). Springer Berlin Heidelberg.

Kim,, M., & Leskovec,, J. (2011). Modeling social networks with node attributes using the multiplicative attribute graph model. In *Proceedings of the twenty‐seventh conference on uncertainty in artificial intelligence, UAI`11* (pp. 400–409). Arlington, VA: AUAI Press.

Kim,, M., & Leskovec,, J. (2012). Multiplicative attribute graph model of real‐world networks. Internet Mathematics, 8, 113–160.

Kivelä,, M., Arenas,, A., Barthelemy,, M., Gleeson,, J. P., Moreno,, Y., & Porter,, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2, 203–271.

Kumar,, A., Rai,, P., & Daumé, III, H. (2010). Co‐regularized spectral clustering with multiple kernels. In *NIPS 2010 workshop: New directions in multiple kernel learning*.

Kumar,, T., Vaidyanathan,, S., Ananthapadmanabhan,, H., Parthasarathy,, S., & Ravindran,, B. (2020). Hypergraph clustering by iteratively reweighted modularity maximization. Applied Network Science, 5, 52.

Kumpula,, J., Saramäki,, J., Kaski,, K., & Kertész,, J. (2007). Limited resolution in complex network community detection with Potts model approach. European Physical Journal B. Condensed Matter and Complex Systems, 56, 41–45.

Kuncheva,, Z., & Montana,, G. (2015). Community detection in multiplex networks using locally adaptive random walks. In *2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM)* (pp. 1308–1315).

Lancichinetti,, A., & Fortunato,, S. (2009). Community detection algorithms: A comparative analysis. Physical Review E, 80, 056117.

Lancichinetti,, A., & Fortunato,, S. (2011). Limits of modularity maximization in community detection. Physical Review E, 84, 066122.

Lancichinetti,, A., Radicchi,, F., Ramasco,, J. J., & Fortunato,, S. (2011). Finding statistically significant communities in networks. PLoS One, 6, 1–18.

Latapy,, M., Viard,, T., & Magnien,, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8, 1–29.

Latouche,, P., Birmelé,, E., & Ambroise,, C. (2011). Overlapping stochastic block models with application to the FRENCH political blogosphere. The Annals of Applied Statistics, 5, 309–336.

Le,, C. M., Levina,, E., & Vershynin,, R. (2017). Concentration and regularization of random graphs. Random Structures %26 Algorithms, 51, 538–561.

Lee,, C., & Wilkinson,, D. J. (2019). A review of stochastic block models and extensions for graph clustering. Applied Network Science, 4, 1–50.

Lee,, J. R., Gharan,, S. O., & Trevisan,, L. (2014). Multiway spectral partitioning and higher‐order Cheeger inequalities. Journal of the ACM, 61, 1–30.

Lei,, J., & Rinaldo,, A. (2015). Consistency of spectral clustering in stochastic block models. The Annals of Statistics, 43, 215–237.

Leitch,, J., Alexander,, K., & Sengupta,, S. (2019). Toward epidemic thresholds on temporal networks: A review and open questions. Applied Network Science, 4, 105.

Leskovec,, J. (2009). Networks, communities and Kronecker products. In *Proceedings of the 1st ACM international workshop on complex networks meet information %26 knowledge management, CNIKM `09* (pp. 1–2). New York, NY: Association for Computing Machinery.

Leskovec,, J., Chakrabarti,, D., Kleinberg,, J., & Faloutsos,, C. (2005). Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In A. M. Jorge,, L. Torgo,, P. Brazdil,, R. Camacho,, & J. Gama, (Eds.), Knowledge discovery in databases: PKDD 2005 (pp. 133–145). Springer Berlin Heidelberg.

Leskovec,, J., Chakrabarti,, D., Kleinberg,, J., Faloutsos,, C., & Ghahramani,, Z. (2010). Kronecker graphs: An approach to modeling networks. Journal of Machine Learning Research, 11, 985–1042.

Leskovec,, J., & Faloutsos,, C. (2007). Scalable modeling of real graphs using Kronecker multiplication. In *Proceedings of the 24th international conference on machine learning, ICML `07* (pp. 497–504). New York, NY: Association for Computing Machinery.

Leskovec,, J., Lang,, K. J., Dasgupta,, A., & Mahoney,, M. W. (2008). Statistical properties of community structure in large social and information networks. In *Proceedings of the 17th international conference on World Wide Web, WWW `08* (pp. 695–704). New York, NY: Association for Computing Machinery.

Li,, C.‐B., Yang,, H., & Komatsuzaki,, T. (2008). Multiscale complex network of protein conformational fluctuations in single‐molecule time series. Proceedings of the National Academy of Sciences of the United States of America, 105, 536–541.

Li,, J., Cuesta‐Albertos,, J. A., & Liu,, R. Y. (2012). DD‐classifier: Nonparametric classification procedure based on DD‐plot. Journal of the American Statistical Association, 107, 737–753.

Li,, P., Dau,, H., Puleo,, G., & Milenkovic,, O. (2017). Motif clustering and overlapping clustering for social network analysis. In *IEEE INFOCOM 2017 – IEEE conference on computer communications* (pp. 1–9).

Li,, P., & Milenkovic,, O. (2017). Inhomogeneous hypergraph clustering with applications. In *Advances in neural information processing systems*.

Li,, P.‐Z., Huang,, L., Wang,, C.‐D., & Lai,, J.‐H. (2019). EdMot: An edge enhancement approach for motif‐aware community detection. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery %26 data mining, KDD `19* (pp. 479–487). New York, NY, USA: Association for Computing Machinery.

Li,, P.‐Z., Huang,, L., Wang,, C.‐D., Lai,, J.‐H., & Huang,, D. (2020). Community detection by motif‐aware label propagation. ACM Transactions on Knowledge Discovery from Data, 14, 1–19.

Li,, Q., Dong,, S., & Mostafavi,, A. (2019). Modeling of inter‐organizational coordination dynamics in resilience planning of infrastructure systems: A multilayer network simulation framework. PLoS One, 14, 1–21.

Li,, T., Levina,, E., & Zhu,, J. (2020). Network cross‐validation by edge sampling. Biometrika, 107, 257–276.

Li,, W., Ahn,, S., & Welling,, M. (2016). Scalable MCMC for mixed membership stochastic blockmodels. In A. Gretton, & C. C. Robert, (Eds.), Proceedings of the 19th international conference on artificial intelligence and statistics, vol. 51 of proceedings of machine learning research (pp. 723–731). PMLR.

Liu,, F., Choi,, D., Xie,, L., & Roeder,, K. (2018). Global spectral clustering in dynamic networks. Proceedings of the National Academy of Sciences of the United States of America, 115, 927–932.

Liu,, N., Yao,, L., & Zhao,, X. (2020). Evaluating the amygdala network induced by neurofeedback training for emotion regulation using hierarchical clustering. Brain Research, 1740, 146853.

Liu,, X. F., Jiang,, X.‐J., Liu,, S.‐H., & Tse,, C. K. (2020). *Knowledge discovery in cryptocurrency transactions: A survey*. arXiv:2010.01031.

Louis,, A., Raghavendra,, P., Tetali,, P., & Vempala,, S. (2011). Algorithmic extensions of Cheeger`s inequality to higher eigenvalues and partitions. In L. A. Goldberg,, K. Jansen,, R. Ravi,, & J. D. P. Rolim, (Eds.), Approximation, randomization, and combinatorial optimization. Algorithms and techniques (pp. 315–326). Springer Berlin Heidelberg.

Lyzinski,, V., Sussman,, D. L., Tang,, M., Athreya,, A., & Priebe,, C. E. (2014). Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding. Electronic Journal of Statistics, 8, 2905–2922.

Lyzinski,, V., Tang,, M., Athreya,, A., Park,, Y., & Priebe,, C. E. (2017). Community detection and classification in hierarchical stochastic blockmodels. IEEE Transactions on Network Science and Engineering, 4, 13–26.

Ma,, T., Wang,, J., & Zhang,, M. (2019). The restricted edge‐connectivity of Kronecker product graphs. Parallel Processing Letters, 29, 1950012.

Mahapatra,, S., & Chandola,, V. (2015). Modeling graphs using a mixture of Kronecker models. In *2015 IEEE international conference on big data (big data)* (pp. 727–736).

Makarychev,, K., Makarychev,, Y., & Vijayaraghavan,, A. (2016). Learning communities in the presence of errors. In *Conference on learning theory* (pp. 1258–1291).

Malliaros,, F. D., & Vazirgiannis,, M. (2013). Clustering and community detection in directed networks: A survey. Physics Reports, 533, 95–142.

Märtens,, M., Meier,, J., Hillebrand,, A., Tewarie,, P., & Mieghem,, P. V. (2017). Brain network clustering with information flow motifs. Applied Network Science, 2, 25.

Martinet,, L.‐E., Kramer,, M., Viles,, W., Perkins,, L., Spencer,, E., Chu,, C., Cash,, S., & Kolaczyk,, E. (2020). Robust dynamic community detection with applications to human brain functional networks. Nature Communications, 11, 2785.

Matias,, C., & Miele,, V. (2017). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79, 1119–1141.

Matuszewski,, P., & Szabó,, G. (2019). Are echo chambers based on partisanship? Twitter and political polarity in Poland and Hungary. Social Media+ Society, 5, 2056305119837671.

Meier,, J., Märtens,, M., Hillebrand,, A., Tewarie,, P., & Van Mieghem,, P. (2017). Motif‐based analysis of effective connectivity in brain networks. In H. Cherifi,, S. Gaito,, W. Quattrociocchi,, & A. Sala, (Eds.), Complex networks %26 their applications V (pp. 685–696). Springer International Publishing.

Mémoli,, F., & Pinto,, G. V. F. (2020). *Motivic clustering schemes for directed graphs*. arXiv preprint arXiv:2001.00278.

Menck,, P. J., Heitzig,, J., Kurths,, J., & Schellnhuber,, H. J. (2014). How dead ends undermine power grid stability. Nature Communications, 5, 3969.

Mercado,, P., Tudisco,, F., and Hein,, M. (2019). Spectral clustering of signed graphs via matrix power means. In *Proceedings of the 36th international conference on machine learning*.

Messaoudi,, I., & Kamel,, N. (2019). A multi‐objective bat algorithm for community detection on dynamic social networks. Applied Intelligence, 49, 2119–2136.

Messina,, F., Giombini,, E., Agrati,, C., Vairo,, F., Bartoli,, T. A., Al Moghazi,, S., Piacentini,, M., Locatelli,, F., Kobinger,, G., Maeurer,, M., Zumla,, A., Capobianchi,, M. R., Lauria,, F. N., Ippolito,, G., & COVID 19 INMI Network Medicine for IDs Study Group. (2020). Covid‐19: Viral–host interactome analyzed by network based‐approach model to study pathogenesis of SARS‐CoV‐2 infection. Journal of Translational Medicine, 18, 1–10.

Meyerhenke,, H., Sanders,, P., & Schulz,, C. (2017). Parallel graph partitioning for complex networks. IEEE Transactions on Parallel and Distributed Systems, 28, 2625–2638.

Michelitsch,, T., Riascos,, A. P., Collet,, B., Nicolleau,, F., & Nowakowski,, A. (2019). Fractional dynamics on networks and lattices. Wiley Online Library.

Milo,, R., Shen‐Orr,, S., Itzkovitz,, S., Kashtan,, N., Chklovskii,, D., & Alon,, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.

Moitra,, A., Perry,, W., & Wein,, A. S. (2016). How robust are reconstruction thresholds for community detection? In *Proceedings of the forty‐eighth annual ACM symposium on theory of computing* (pp. 828–841).

Moreno,, S., Kirshner,, S., Neville,, J., & Vishwanathan,, S. V. N. (2010). Tied Kronecker product graph models to capture variance in network populations. In *2010 48th annual Allerton conference on communication, control, and computing (Allerton)* (pp. 1137–1144).

Moreno,, S., Robles,, P., & Neville,, J. (2013). Block Kronecker product graph model.

Mosler,, K. (2013). Depth statistics. In C. Becker,, R. Fried,, & S. Kuhnt, (Eds.), Robustness and complex data structures (pp. 17–34). Springer.

Mucha,, P. J., Richardson,, T., Macon,, K., Porter,, M. A., & Onnela,, J.‐P. (2010). Community structure in time‐dependent, multiscale, and multiplex networks. Science, 328, 876–878.

Nadler,, B., Srebro,, N., & Zhou,, X. (2009). Semi‐supervised learning with the graph Laplacian: The limit of infinite unlabelled data. In *Neural information processing systems (NIPS)*.

Newman,, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physics Review, 69, 066133.

Newman,, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103, 8577–8582.

Nguyen,, N. P., Dinh,, T. N., Shen,, Y., & Thai,, M. T. (2014). Dynamic social community detection and its applications. PLoS One, 9, e91431.

Nielsen,, F. (2016). Hierarchical clustering (pp. 195–211). Springer International Publishing.

Nowicki,, K., & Snijders,, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96, 1077–1087.

Okuda,, M., Satoh,, S., Sato,, Y., & Kidawara,, Y. (2019). Community detection using restrained random‐walk similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 89–103.

Oliveira,, M., & Gama,, J. (2012). An overview of social network analysis. WIREs Data Mining and Knowledge Discovery, 2, 99–115.

Ouvrard,, X. (2020). *Hypergraphs: An introduction and review*. arXiv preprint:2002.05014.

Paez,, M. S., Amini,, A. A., & Lin,, L. (2019). *Hierarchical stochastic block model for community detection in multiplex networks*. arXiv preprint arXiv:1904.05330.

Palla,, G., Barabási,, A.‐L., & Vicsek,, T. (2007). Quantifying social group evolution. Nature, 446, 664–667.

Palla,, G., Pollner,, P., Barabási,, A.‐L., & Vicsek,, T. (2009). Social group dynamics in networks. In Adaptive networks (pp. 11–38). Springer.

Pamfil,, A. R., Howison,, S. D., Lambiotte,, R., & Porter,, M. A. (2019). Relating modularity maximization and stochastic block models in multilayer networks. SIAM Journal on Mathematics of Data Science, 1, 667–698.

Pan,, X., Papailiopoulos,, D., Oymak,, S., Recht,, B., Ramchandran,, K., & Jordan,, M. I. (2015). Parallel correlation clustering on big graphs. In *Proceedings of the 28th international conference on neural information processing systems – Volume 1, NIPS`15* (pp. 82–90). Cambridge, MA: MIT Press.

Paul,, S., & Chen,, Y. (2016a). Consistent community detection in multi‐relational data through restricted multi‐layer stochastic blockmodel. Electronic Journal of Statistics, 10, 3807–3870.

Paul,, S., & Chen,, Y. (2016b). *Null models and modularity based community detection in multi‐layer networks*. arXiv preprint arXiv:1608.00623.

Paul,, S., & Chen,, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi‐layer networks. The Annals of Statistics, 48, 230–250.

Pavlović,, D. M., Vértes,, P. E., Bullmore,, E. T., Schafer,, W. R., & Nichols,, T. E. (2014). Stochastic blockmodeling of the modules and core of the *Caenorhabditis elegans* connectome. PLoS One, 9, e97584.

Peel,, L., Delvenne,, J.‐C., & Lambiotte,, R. (2018). Multiscale mixing patterns in networks. Proceedings of the National Academy of Sciences of the United States of America, 115, 4057–4062.

Peixoto,, T. P. (2015). Model selection and hypothesis testing for large‐scale network models with overlapping groups. Physical Review X, 5, 011033.

Peixoto,, T. P. (2018). Nonparametric weighted stochastic block models. Physical Review E, 97, 012306.

Pensky,, M., & Zhang,, T. (2019). Spectral clustering in the dynamic stochastic block model. Electronic Journal of Statistics, 13, 678–709.

Pfeiffer,, J. J., Moreno,, S., La Fond,, T., Neville,, J., & Gallagher,, B. (2014). Attributed graph models: Modeling network structure with correlated attributes. In *Proceedings of the 23rd international conference on World Wide Web, WWW `14* (pp. 831–842). New York, NY: Association for Computing Machinery.

Pilosof,, S., Porter,, M. A., Pascual,, M., & Kéfi,, S. (2017). The multilayer nature of ecological networks. Nature Ecology %26 Evolution, 1, 0101.

Pons,, P., & Latapy,, M. (2005). Computing communities in large networks using random walks. In *International symposium on computer and information sciences* (pp. 284–293). Springer.

Pržulj,, N. (2007). Biological network comparison using graphlet degree distribution. Bioinformatics, 23, e177–e183.

Purkait,, P., Chin,, T., Sadri,, A., & Suter,, D. (2017). Clustering with hypergraphs: The case for large hyperedges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1697–1711.

Qian,, X., Chen,, Y., & Minca,, A. (2019). *Clustering degree‐corrected stochastic block model with outliers*. arXiv preprint arXiv:1906.03305.

Qu,, S., & Makowski,, A. M. (2019). *Node isolation in large homogeneous binary multiplicative attribute graph models*.

Radcliffe,, M., & Young,, S. J. (2014). The spectra of multiplicative attribute graphs. Linear Algebra and its Applications, 462, 39–58.

Ranshous,, S., Joslyn,, C. A., Kreyling,, S., Nowak,, K., Samatova,, N. F., West,, C. L., & Winters,, S. (2017). Exchange pattern mining in the bitcoin transaction directed hypergraph. In *International conference on financial cryptography and data security* (pp. 248–263). Springer.

Ravasz,, E., Somera,, A. L., Mongru,, D. A., Oltvai,, Z. N., & Barabási,, A.‐L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, 1551–1555.

Reichardt,, J., & Bornholdt,, S. (2006). Statistical mechanics of community detection. Physical Review E, 74, 016110.

Riascos,, A. P., & Mateos,, J. L. (2012). Long‐range navigation on complex networks using lévy random walks. Physical Review E, 86, 056110.

Ribeiro,, P., Paredes,, P., Silva,, M. E., Aparicio,, D., & Silva,, F. (2019). *A survey on subgraph counting: Concepts, algorithms and applications to network motifs and graphlets*. arXiv preprint arXiv:1910.13011.

Riolo,, M. A., & Newman,, M. E. J. (2014). First‐principles multiway spectral partitioning of graphs. Journal of Complex Networks, 2, 121–140.

Rocklin,, M., & Pinar,, A. (2013). On clustering on graphs with multiple edge types. Internet Mathematics, 9, 82–112.

Rohe,, K., Chatterjee,, S., & Yu,, B. (2011). Spectral clustering and the high‐dimensional stochastic blockmodel. The Annals of Statistics, 39, 1878–1915.

Rossetti,, G., & Cazabet,, R. (2018). Community discovery in dynamic networks: A survey. ACM Computing Surveys (CSUR), 51, 1–37.

Rosvall,, M., & Bergstrom,, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 1118–1123.

Roy,, S., Ghosh,, P., Barua,, D., & Das,, S. K. (2020). Motifs enable communication efficiency and fault‐tolerance in transcriptional networks. Scientific Reports, 10, 1–15.

Saldaña,, D. F., Yu,, Y., & Feng,, Y. (2017). How many communities are there? Journal of Computational and Graphical Statistics, 26, 171–181.

Sanna Passino,, F., & Heard,, N. (2020). Bayesian estimation of the latent dimension and communities in stochastic blockmodels. Statistics and Computing, 30, 1291–1307.

Schultz,, P., Heitzig,, J., & Kurths,, J. (2014). Detours around basin stability in power networks. New Journal of Physics, 16, 125001.

Seshadhri,, C., Pinar,, A., & Kolda,, T. G. (2013). An in‐depth analysis of stochastic Kronecker graphs. Journal of the ACM, 60, 1–32.

Shen‐Orr,, S. S., Milo,, R., Mangan,, S., & Alon,, U. (2002). Network motifs in the transcriptional regulation network of *Escherichia coli*. Nature Genetics, 31, 64–68.

Shun,, J., Roosta‐Khorasani,, F., Fountoulakis,, K., & Mahoney,, M. W. (2016). Parallel local graph clustering. Proceedings of the VLDB Endowment, 9, 1041–1052.

Stone,, L., Simberloff,, D., & Artzy‐Randrup,, Y. (2019). Network motifs and their origins. PLoS Computational Biology, 15, e1006749.

Tagarelli,, A., Amelio,, A., & Gullo,, F. (2017). Ensemble‐based community detection in multilayer networks. Data Mining and Knowledge Discovery, 31, 1506–1543.

Takai,, Y., Miyauchi,, A., Ikeda,, M., & Yoshida,, Y. (2020). Hypergraph clustering based on PageRank (pp. 1970–1978). Association for Computing Machinery.

Takes,, F. W., Kosters,, W. A., Witte,, B., & Heemskerk,, E. M. (2018). Multiplex network motifs as building blocks of corporate networks. Applied Network Science, 3, 1–22.

Tang,, L., Jing,, K., He,, J., & Stanley,, H. (2015). Complex interdependent supply chain networks: Cascading failure and robustness. Physica A: Statistical Mechanics and its Applications, 443, 58–69.

Tarjan,, R. (1971). Depth‐first search and linear graph algorithms. In *12th annual symposium on switching and automata theory (SWAT 1971)* (pp. 114–121).

Temkin,, O., Zeigarnik,, A., & Bonchev,, D. (1996). Chemical reaction networks: A graph‐theoretical approach. Taylor %26 Francis.

Tian,, Y., & Gel,, Y. (2019). Fusing data depth with complex networks: Community detection with prior information. Computational Statistics %26 Data Analysis, 139, 99–116.

Tian,, Y., & Gel,, Y. R. (2017). Fast community detection in complex networks with a k‐depths classifier. In S. E. Ahmed, (Ed.), Big and complex data analysis: Methodologies and applications (pp. 139–157). Springer.

Tien,, J. H., Eisenberg,, M. C., Cherng,, S. T., & Porter,, M. A. (2020). Online reactions to the 2017 ‘unite the right’ rally in Charlottesville: Measuring polarization in twitter networks using media followership. Applied Network Science, 5, 1–27.

Trevisan,, L. (2013). *Is Cheeger‐type approximation possible for nonuniform sparsest cut*? arXiv preprint arXiv:1303.2730.

Tsourakakis,, C. E., Pachocki,, J., & Mitzenmacher,, M. (2017). Scalable motif‐aware graph clustering. In *Proceedings of the 26th international conference on World Wide Web, WWW `17* (pp. 1451–1460). Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee.

Vajdi,, A., Juher,, D., Saldaña,, J., & Scoglio,, C. (2020). A multilayer temporal network model for STD spreading accounting for permanent and casual partners. Scientific Reports, 10, 3846.

Vallès‐Català,, T., Massucci,, F. A., Guimerà,, R., & Sales‐Pardo,, M. (2016). Multilayer stochastic block models reveal the multilayer structure of complex networks. Physical Review X, 6, 011036.

Van Lierde,, H., Chow,, T. W. S., & Chen,, G. (2020). Scalable spectral clustering for overlapping community detection in large‐scale networks. IEEE Transactions on Knowledge and Data Engineering, 32, 754–767.

Vardi,, Y., & Zhang,, C.‐H. (2000). The multivariate L1‐median and associated data depth. Proceedings of the National Academy of Sciences of the United States of America, 97, 1423–1426.

Viard,, T., Latapy,, M., & Magnien,, C. (2016). Computing maximal cliques in link streams. Theoretical Computer Science, 609, 245–252.

Victor,, F. (2020). Address clustering heuristics for Ethereum. In J. Bonneau, & N. Heninger, (Eds.), Financial cryptography and data security (pp. 617–633). Springer International Publishing.

Voloshin,, V. (2009). Introduction to graph and hypergraph theory. Matematicas (E‐libro). Nova Science Publishers.

von Luxburg,, U. (2007). A tutorial on spectral clustering. Statistics %26 Computing, 17, 395–416.

Vu,, D. Q., Hunter,, D. R., & Schweinberger,, M. (2013). Model‐based clustering of large networks. The Annals of Applied Statistics, 7, 1010–1039.

Wang,, F., Wang,, X., Shao,, B., Li,, T., & Ogihara,, M. (2009). Tag integrated multi‐label music style classification with hypergraph. In *ISMIR*.

Wang,, Y., Zhu,, L., Qian,, X., & Han,, J. (2018). Joint hypergraph learning for tag‐based image retrieval. IEEE Transactions on Image Processing, 27, 4437–4451.

Wang,, Y. X. R., & Bickel,, P. J. (2017). Likelihood‐based model selection for stochastic block models. The Annals of Statistics, 45, 500–528.

Watts,, D. J., & Strogatz,, S. H. (1998). Collective dynamics of ‘small‐world’ networks. Nature, 393, 440–442.

Weaver,, I. S., Williams,, H., Cioroianu,, I., Williams,, M., Coan,, T., & Banducci,, S. (2018). Dynamic social media affiliations among UKpoliticians. Social Networks, 54, 132–144.

Wei,, F., Qian,, W., Wang,, C., & Zhou,, A. (2009). Detecting overlapping community structures in networks. World Wide Web, 12, 235–261.

Weichsel,, P. (1962). The Kronecker product of graphs. Proceedings of the American Mathematical Society, 13, 47–52.

Weng,, L., Menczer,, F., & Ahn,, Y.‐Y. (2013). Virality prediction and community structure in social networks. Scientific Reports, 3, 2522.

Wider,, N., Garas,, A., Scholtes,, I., & Schweitzer,, F. (2016). An ensemble perspective on multi‐layer. Networks, 1, 37–59.

Wong,, S. W., Pastrello,, C., Kotlyar,, M., Faloutsos,, C., & Jurisica,, I. (2018). SDREGION: Fast spotting of changing communities in biological networks. In *Proceedings of the 24th ACM SIGKDD international conference on Knowledge discovery %26 data mining* (pp. 867–875). ACM.

Yang,, K., Dong,, X., & Toni,, L. (2019). *Error analysis on graph Laplacian regularized estimator*. arXiv preprint arXiv:1902.03720.

Yang,, Y., Xu,, K.‐J., & Hong,, C. (2021). Network dynamics on the Chinese air transportation multilayer network. International Journal of Modern Physics C, 32, 2150070.

Yenerdag,, E. (2016). *Contagion analysis in European financial markets through the lens of weighted stochastic block model: Systematically important communities of financial institutions* (Ph.D. thesis).

Yildirimoglu,, M., & Kim,, J. (2017). Identification of communities in urban mobility networks using multi‐layer graphs of network traffic. Transportation Research Procedia, 27, 1034–1041.

Yuvaraj,, M., Dey,, A., Lyubchich,, V., Gel,, Y., & Poor,, H. (2021). Topological clustering of multilayer networks. Proceedings of the National Academy of Sciences of the United States of America (in press). 118, 1–9.

Zachary,, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452–473.

Zakrzewska,, A., & Bader,, D. A. (2015). A dynamic algorithm for local community detection in graphs. In *Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015* (pp. 559–564). ACM.

Zhang,, A. Y., & Zhou,, H. H. (2016). Minimax rates of community detection in stochastic block models. The Annals of Statistics, 44, 2252–2280.

Zhang,, X., Tian,, Y., Guan,, G., & Gel,, Y. (2021). Depth‐based classification for relational data with multiple attributes. Journal of Multivariate Analysis, 184, 104732.

Zhang,, Y., Levina,, E., & Zhu,, J. (2020). Detecting overlapping communities in networks using spectral methods. SIAM Journal on Mathematics of Data Science, 2, 265–283.

Zhao,, Y. (2017). A survey on theoretical advances of community detection in networks. WIREs Computational Statistics, 9, e1403.

Zhao,, Y., Levina,, E., & Zhu,, J. (2012). Consistency of community detection in networks under degree‐corrected stochastic block models. The Annals of Statistics, 40, 2266–2292.

Zhou,, D., Huang,, J., & Schölkopf,, B. (2006). Learning with hypergraphs: Clustering, classification, and embedding. In *Proceedings of the 19th international conference on neural information processing systems, NIPS`06* (pp. 1601–1608). Cambridge, MA: MIT Press.

Zhou,, Z., & Amini,, A. A. (2019). Analysis of spectral clustering algorithms for community detection: The general bipartite setting. Journal of Machine Learning Research, 20(47), 1–47.

Zhu,, L., Shen,, J., Jin,, H., Zheng,, R., & Xie,, L. (2015). Content‐based visual landmark search via multimodal hypergraph learning. IEEE Transactions on Cybernetics, 45, 2756–2769.

Zitnik,, M., Sosič,, R., Feldman,, M. W., & Leskovec,, J. (2019). Evolution of resilience in protein interactomes across the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 116, 4426–4433.

Znidi,, F., Davarikia,, H., Iqbal,, K., & Barati,, M. (2019). Multi‐layer spectral clustering approach to intentional islanding in bulk power systems. Journal of Modern Power Systems and Clean Energy, 7, 1044–1055.

Zuo,, Y., & Serfling,, R. (2000). General notions of statistical depth function. The Annals of Statistics, 28, 461–482.