Agrawal, R,Imeilinski, T,Swami, A.Mining association rules between sets of items in large databases. In:Proceeding of ACM SIGMOD Conference on Management of Data.Washington, DC: ACM;1993,207–216.
Nath, B,Bhattacharyya, DK,Ghosh, A.Faster generation of association rules.Int J Inform Technol Knowl Manage2008,1:267–279.
Srikant, R.Fast algorithms for mining association rules and sequential patterns. Ph.D thesis, University of Wisconsin, Madison, WI, 1996.
Han, J,Kamber, M.Data Mining Concepts and Techniques.San Francisco, CA: Morgan Kaufmann;2001.
Agrawal, R,Srikant, R.Mining sequential patterns. In:Proceedings of the 1995 International Conference on Data Engineering (ICDE95).Taipei, Taiwan;1995,3–14.
Agarwal, R,Mannila, H,Srikant, R,Toivonan, H,Verkamo, A.Fast discovery of association rules. In:Fayyad, U, Piatetsky‐Shapiro G, Smyth P, Uthurusamy R, (eds).Advances in KDD.Boston, MA: MIT Press;1996,307–328.
Brin, S,Motwani, R,Tsur, D,Ullman, J.Dynamic itemset counting and implication rules for market basket data. In:Proceedings of ACM SIGMOD International Conference on Management of Data.Tucson, AZ;1997,255–264.
Das, A,Bhattacharyya, DK,Kalita, J.Horizontal vs. vertical partitioning in association rule mining: a comparison. In:Proceedings of the 6th International Conference on Computational Intelligence and Natural Computation (CINC).Cary, NC;2003,1617–1620.
Park, JS,Chen, MS,Yu, PS.An effective hash based algorithm for mining association rules. In:Proceedings of ACM SIGMOD;1995,175–186.
Savasere, A,Omiecinski, E,Navathe, S.An efficient algorithm for mining association rules in large databases. In:Proceeding of the 1995 International Conference on Very Large Data Bases (VLDB95).Zurich, Switzerland;1995,432–443.
Toivonen, H.Sampling large databases for association rules. In:Proceeding of the 1996 International Conference on Very Large Data Bases (VLDB96).Bombay, India;1996,134–145.
Lin, DI,Kedem, ZM.Pincer‐search: an efficient algorithm for discovering the maximal frequent set. In:Proceedings of 6th European Conference on Extending DB Tech;1998,105–119.
Houtsma, M,Swami, A.Set‐oriented mining of association rules in relational databases. In:Proceedings of the 11th International Conference on Data Engineering;1995,25–33.
Cheung, DW,Han, J,Ng, VT,Wong, CY.Maintenance of discovered association rules in large databases: an incremental updating technique. In:Proceedings of 12th International Conference on Data Engineering.New Orleans, LA;1996,106–114.
Agrawal, R,Shafer, JC.Parallel mining of association rules: design, implementation, and experience.IEEE Trans Knowl Data Eng1996,8:962–969.
Cheung, DW,Han, J,Ng, V,Fu, A,Fu, Y.A fast distributed algorithm for mining association rules. In:Proceeding of the 1996 International Conference on Parallel and Distributed Information Systems.Miami Beach, FL;1996,31–44.
Zaki, MJ,Parthasarathy, S,Ogihara, M,Li, W.Parallel algorithm for discovery of association rules.Data Mining Knowl Discov1997,1:343–374.
Sarawagi, S,Thomas, S,Agrawal, R.Integrating association rule mining with relational database systems: alternatives and implications. In:Proceeding of the 1998 ACM‐SIGMOD International Conference on Management of Data (SIGMOD98).Seattle, WA;1998,343–354.
Grahne, G,Zhu, J.Fast algorithms for frequent itemset mining using fp‐trees.IEEE Trans Knowl Data Eng2005,17:1347–1362.
Juan, X,Feng, Y,Zhiyong, Z.Association rule mining and application in intelligent transportation system. In:Preceedings of the 27th Chinese Control Conference, China;2008,538–540.
Lee, CH,Chen, MS,Lin, CR.Progressive partition miner: an efficient algorithm for mining general temporal association rules.IEEE Trans Knowl Data Eng2003,15:1004–1017.
Zhang, C,Zhang, S,Webb, GI.Identifying approximate itemsets of interest in large databases.Appl Intell2003,18:91–104.
Park, JS,Ch, en M,Yu, PS.Efficient parallel data mining for association rules. In:Proceedings of ACM International Conference on Information and Knowledge Management.New York: ACM Press;1995,31–36.
Cheung, D.A fast distributed algorithm for mining association rules. In:Proceedings of 4th International Conference on Parallel and Distributed Information Systems.Los Alamitos, CA: IEEE Computer Society Press;1996,31–42.
Cheung, D,Xiao, Y.Effect of data skewness in parallel mining of association rules. In:Proceedings of Pacific‐Asia Conference on Knowledge Discovery and Data Mining.New York: Springer‐Verlag;1998,48–60.
Webb, GI.Filtered‐top‐k association discovery.WIREs Data Mining Knowl Discov2011,1:183–192.
Zhang, S,Wu, X.Fundamentals of association rules in data mining and knowledge discovery.WIREs Data Mining Knowl Discov2011,1:97–116.
Han, J,Pei, J,Yin, Y.Mining frequent patterns without candidate generation. In:Proceedings of 2000 ACM‐SIGMOD International Conference on Management of Data.Dallas, TX;2000,1–12.
Agarwal, R,Aggarwal, CC,Prasad, VVV.A tree projection algorithm for generation of frequent itemsets.J Parallel Distribut Comput2001,61:350–371.
Pei, J,Han, J,Mortazavi‐Asl, B,Pinto, H,Chen, Q,Dayal, U,Hsu, MC.Prefixspan: mining sequential patterns efficiently by prefix‐projected pattern growth. In:Proceeding of the 2001 International Conference on Data Engineering (ICDE01).Heidelberg, Germany;2001,215–224.
Liu, G,Lu, H,Lou, W,Yu, JX.On computing, storing and querying frequent patterns. In:Proceeding of the 2003 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD03).Washington, DC: ACM;2003,607–612.
Liu, J,Pan, Y,Wang, K,Han, J.Mining frequent item sets by opportunistic projection. In:Proceeding of the 2002 ACM SIGKDD International Conference on Knowledge Discovery in Databases (KDD02).Edmonton, Canada;2002,239–248.
Grahne, G,Zhu, J.Efficiently using prefix‐trees in mining frequent itemsets. In:Proceeding of the ICDM03 International Workshop on Frequent Itemset Mining Implementations (FIMI03).Melbourne, FL;2003,123–132.
Garcia, S,Luengo, J,Saez, JA,Lopez, V,Herrera, F.A survey of discretization techniues: taxonomy and empirical analysis in supervised learning.IEEE Trans Knowl Data Eng2012.
Cheung, DW,Lee, SD,Kao, B.A general incremental technique for maintaining discovered association rules. In:Proceedings of the 5th International Conference on Database System for Advanced Applications.Melbourn, Australia;1997,185–194.
Xu, B,Yi, T,Wu, F,Chen, Z.An incremental updating algorithm for mining association rules.J Electron2002,19:403–407.
Aumann, Y,Feldman, R,Lipshtat, O,Manilla, H.Borders: an efficient algorithm for association generation in dynamic databases.J Intell Inform Syst1999,12:61–73.
Ayan, NF,Tansel, AU,Arkun, ME.An efficient algorithm to update large itemsets with early pruning.Knowl Discov Data Mining1999,287–291.
Ng, R,Lakshamnan, VS,Han, J,Pang, A.Exploratory mining and pruning optimizations of constrained association rules. In:Proceedings of 1998 International Conference on Management of Data (ACM‐SIGMOD);1998,13–24.
Ganti, V,Gehrke, J,Ramakrishnan, R.DEMON:mining and monitoring evolving data.IEEE Trans Knowl Data Eng2001,13:50–63.
Ayad, AM.A new algorithm for incremental mining of constrained association rules Masters Thesis. Department of Computer Sciences and Automatic Control, Alexandria University, Alexandria, Egypt; 2000.
Ezeife, CI,Su, Y.Mining incremental association rules with generalized FP Tree. In:Proceedings of 15th Conference of the Canadian Society for Computational Studies of Intelligence on Advances in Artificial Intelligence.Calgary, Canada;2002,147–160.
Das, A,Bhattacharyya, DK.Rule mining for dynamic databases.Australasian J Inform Syst2005,13:19–39.
Guirguis, S,Ahmed, KM,Makky, NME,Hafez, AM.Mining the future: predicting itemsets support of association rules mining. In:Proceedings of Sixth IEEE International Conference on Data Mining ‐ Workshops (ICDMW`06);2006,474–478.
Amornchewin, R,Kreesuradej, W.Incremental association rule mining using promising frequent itemset algorithm. In:Proceedings of 6th International Conference on Information, Communications and Signal Processing;2007,1–5.
Amornchewin, R,Kreesuradej, W.False positive item set algorithm for incremental association rule.Int J Multimedia Ubiquitous Eng2009,4:1–12.
Gharib, TF,Nassar, H,Taha, M,Abraham, A.An efficient algorithm for incremental mining of temporal association rules.Data Knowl Eng2010,69:800–815.
Hong, TP,Lin, CW,Wu, YL.Incrementally fast updated frequent pattern trees.Expert Syst Appl2008,34:2424–2435.
Huang, JP,Chen, SJ,Kuo, HC.An efficient incremental mining algorithm‐QSD.Intell Data Anal2007,11:265–278.
Kao, B,Zhang, M,Yip, CL,Cheung, DW,Fayyad, U.Efficient algorithms for mining and incremental update of maximal frequent sequences.Data Mining Knowl Discov2005,10:87–116.
Laur, PA,Symphor, JE,Nock, R,Poncelet, P.Statistical supports for mining sequential patterns and improving the incremental update process on data streams.Intell Data Anal2007,11:29–47.
Li, J,Manoukian, T,Dong, G,Ramamohanarao, K.Incremental maintenance on the border of the space of emerging patterns.Data Mining Knowl Discov2004,9:89–116.
Lin, CW,Hong, TP,Lu, WH.The Pre‐FUFP algorithm for incremental mining.Expert Syst Appl2009,36:9498–9505.
Ou, JC,Lee, CH,Chen, MS.Efficient algorithms for incremental web log mining with dynamic thresholds.Int J Very Large Data Bases2008,17:827–845.
Pradeepini, G,Jyothi, S.Tree‐based incremental association rule mining without candidate itemset generation. In:Trends in Information Sciences Computing (TISC);2010,78–81.
Shaw, G,Xu, Y,Geva, S.Deriving non‐redundant approximate association rules from hierarchical datasets. In:Proceeding of the 17th ACM Conference on Information and Knowledge Management.Napa Valley, CA;2008,26–30.
Tseng, MC,Lin, WY,Jeng, R.Incremental maintenance of generalized association rules under taxonomy evolution.Inform Sci2008,34:174–195.
Yafi, E,Al Hegami, AS,Alam, MA,Biswas, R.Incremental mining of shocking association patterns.ProcWorld Acad Sci Eng Technol2009,49:801–805.
Ghosh, A,Nath, B.Multi‐objective rule mining using genetic algorithms.Inform Sci2004,163:123–133.
DeLima, P,Yen, G.Multiple objective evolutionary algorithm for temporal rule extraction In: 31st Annual Conference of IEEE Industrial Electronics Society, 2005 (IECON 2005); 2005, 1–6.
Nath, B,Bhattacharyya, DK,Ghosh, A.Discovering association rules from incremental datasets.Int J Comput Sci Commun2010,1:433–441.
Matthews, SG,Gongora, MA,Hopgood, AA.Evolving temporal fuzzy association rules from quantitative data with a multi‐objective evolutionary algorithm. Corchado, E,Kurzynski, M,Wozniak, M, (eds). In:Hybrid Artificial Intelligent Systems.Lecture Notes in Computer Science, Berlin, Germany: Springer;2011,6678:198–205.
Matthews, SG,Gongora, MA,Hopgood, AA.Evolving temporal association rules with genetic algorithms. Bramer, M,Petridis, M,Hopgood, A, (eds). In:Research and Development in Intelligent Systems XXVII.London: Springer;2010,107–120.
Mitra, S,Pal, SK,Mitra, P.Data mining in soft computing framework: a survey.IEEE Trans Neural Netw2002,13:3–14.
del, Jesús MJ,Gámez, JA,González, P,Puerta, JM.On the discovery of association rules by means of evolutionary algorithms.WIREs Data Mining Knowl Discov2011,1:397–415.
Kianmehr, K,Kaya, M,ElSheikh, AM,Jida, J,Alhajj, R.Fuzzy association rule mining framework and its application to effective fuzzy associative classification.WIREs Data Mining Knowl Discov2011,1:477–495.