Floreano, D, Mattiussi, C. Bio‐Inspired Artificial Intelligence: Theories, Methods, and Technologies. The MIT Press, Cambridge, MA, USA; 2008.
Yang, XS, Cui, Z, Xiao, R, Gandomi, AH, Karamanoglu, M, eds. Swarm Intelligence and Bio‐Inspired Computation. Theory and Applications. Elsevier; 2013. doi: 10.1016/B978-0-12-405163-8.00020-X.
Zhang, G. Neural networks for classification: a survey. IEEE Trans Syst Man Cybern C Appl Rev 2000, 30:451–462. doi: 10.1109/5326.897072.
Eiben, AE, Smith, JE. Introduction to Evolutionary Computing. Natural Computing Series. 2nd ed. Springer; 2007.
Zheng, J, Chen, Y, Zhang, W. A survey of artificial immune applications. Artif Intell Rev 2010, 34:19–34. doi: 10.1007/s10462-010-9159-9.
Bonabeu, E, Eric, T, Dorigo, M. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, NY, USA; 1999.
Dorigo, M, Birattari, M. Swarm intelligence. Scholarpedia 2007, 2:1462.
Kennedy, J. Particle swarm optimization. In: Sammut, C, Webb, G, eds. Encyclopedia of Machine Learning. Springer; 2010, 760–766. doi: 10.1007/978-0-387-30164-8_630.
Dorigo, M, Gambardella, L. Ant colony system: a cooperative learning approach to the traveling salesman problems. IEEE Trans Evol Comput 1997, 1:53–66.
Karaboga, D, Akay, B. A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 2009, 31:61–85. doi: 10.1007/s10462-009-9127-4.
Yang, XS. Swarm‐based metaheuristic algorithms and no‐free‐lunch theorems. In: Theory and New Applications of Swarm Intelligence. InTech; 2012, 1–16. doi: 10.5772/30852.
Koza, JR. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, MA, USA; 1992.
Shirakawa, S, Ogino, S, Nagao, T. Dynamic ant programming for automatic construction of programs. IEEJ Trans Electr Electron Eng 2008, 3:540–548. doi: 10.1002/tee.20311.
Kumaresan, N. Optimal control for stochastic linear quadratic singular periodic neuro Takagi‐Sugeno (T‐S) fuzzy system with singular cost using ant colony programming. Appl Math Modell 2011, 35:3797–3808. doi: 10.1016/j.apm.2011.02.017.
Olmo, JL, Romero, JR, Ventura, S. Using ant programming guided by grammar for building rule‐based classifiers. IEEE Trans Syst Man Cybern B Cybern 2011, 41:1585–1599. doi: 10.1109/TSMCB.2011.2157681.
Karaboga, D, Ozturk, C, Karaboga, N, Gorkemli, B. Artificial bee colony programming for symbolic regression. Inform Sci 2012, 209:1–15. doi: 10.1016/j.ins.2012.05.002.
Si, T, De, A, Bhattacharjee, A. Grammatical bee colony. In: Panigrahi, B, Suganthan, P, Das, S, Dash, S, eds. Swarm, Evolutionary, and Memetic Computing. LNCS, vol. 8297. Springer; 2013, 436–445. doi: 10.1007/978-3-319-03753-0_39.
Parpinelli, RS, Lopes, HS. New inspirations in swarm intelligence: a survey. Int J Bio‐Inspired Comput 2011, 3:1–16. doi: 10.1504/IJBIC.2011.038700.
Karaboga, D, Gorkemli, B, Ozturk, C, Karaboga, N. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 2014, 42:21–57. doi: 10.1007/s10462-012-9328-0.
Millonas, MM. Swarms, phase transitions and collective intelligence. In: Langton, C, ed. Artificial Life III. Addison‐Wesley, Reading, MA, USA; 1994, 417–445.
Garnier, S, Gautrais, J, Theraulaz, G. The biological principles of swarm intelligence. Swarm Intell 2007, 1:3–31. doi: 10.1007/s11721-007-0004-y.
Koza, JR, Andre, D, Bennett, FH, Keane, MA. Genetic Programming III: Darwinian Invention %26 Problem Solving. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA; 1999.
Abbass, HA, Hoai, X, Mckay, RI. AntTAG: a new method to compose computer programs using colonies of ants. In: IEEE Congress on Evolutionary Computation (IEEE CEC); 2002, 1654–1659. doi:10.1109/CEC.2002.1004490.
Vanneschi, L, Castelli, M, Silva, S. Measuring bloat, overfitting and functional complexity in genetic programming. In: Genetic and Evolutionary Computation Conference (GECCO). ACM; 2010, 877–884. doi: 10.1145/1830483.1830643.
O`Neill, M, Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell, MA, USA; 2003.
Ryan, C, Collins, J, Neill, M. Grammatical evolution: evolving programs for an arbitrary language. In: Genetic Programming. LNCS, vol. 1391. Springer; 1998, 83–96. doi: 10.1007/BFb0055930.
Hoai, NX, Mckay, RI, Abbass, HA. Tree adjoining grammars, language bias, and genetic programming. In: European Conference on Genetic Programming (EuroGP). LNCS, Springer, Heidelberg, Berlin; 2003, 2610:340–349. doi: 10.1007/3-540-36599-0_31.
Whigham, P. Grammatically biased genetic programming. In: Workshop on Genetic Programming: From Theory to Real‐World Applications; 1995, 33–41.
Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer; 2006.
Balázs, K, Kóczy, LT. Hierarchical‐interpolative fuzzy system construction by genetic and bacterial memetic programming approaches. Int J Uncertain Fuzziness Knowl‐Based Syst 2012, 20:105–131. doi: 10.1142/S021848851240017X.
Botzheim, J, Cabrita, C, Koczy, LT, Ruano, AE. Genetic and bacterial programming for B‐spline neural networks design. J Adv Comput Intell Intell Inform 2007, 11:220–231.
Cabrita, C, Botzheim, J, Ruano, AE, Koczy, LT. Design of B‐spline neural networks using a bacterial programming approach. In: International Joint Conference on Neural Networks (IJCNN); 2004, 2313–2318. doi:10.1109/IJCNN.2004.1380987.
Nawa, N, Furuhashi, T. Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans Fuzzy Syst 1999, 7:608–616.
Passino, K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 2002, 22:52–67. doi: 10.1109/MCS.2002.1004010.
Johnson, CG. Artificial immune system programming for symbolic regression. In: Genetic Programming. LNCS, vol. 2610. Berlin/Heidelberg: Springer; 2003, 345–353. doi: 10.1007/3-540-36599-0_32.
Musilek, P, Lau, A, Reformat, M, Wyard‐Scott, L. Immune programming. Inform Sci 2006, 176:972–1002. doi: 10.1016/j.ins.2005.03.009.
Bernardino, H, Barbosa, H. Grammar‐based immune programming. Nat Comput 2011, 10:209–241. doi: 10.1007/s11047-010-9217-x.
Wang, S, Ma, J, He, Q. An immune programming‐based ranking function discovery approach for effective information retrieval. Expert Syst Appl 2010, 37:5863–5871. doi: 10.1016/j.eswa.2010.02.019.
Boussaïd, I, Lepagnot, J, Siarry, P. A survey on optimization metaheuristics. Inform Sci 2013, 237:82–117. doi: 10.1016/j.ins.2013.02.041.
Timmis, J, Andrews, P, Hart, E. On artificial immune systems and swarm intelligence. Swarm Intell 2010, 4:247–273. doi: 10.1007/s11721-010-0045-5.
Castro, LN, Timmis, J. Artificial Immune Systems: A New Computational Intelligence Approach. Springer; 2002.
Dorigo, M, Maniezzo, V, Colorni, A. Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 1996, 26:29–41. doi: 10.1109/3477.484436.
Roux, O, Fonlupt, C. Ant programming: or how to use ants for automatic programming. In: International Conference on Swarm Intelligence (ANTS); 2000, 121–129.
Salehi‐Abari, A, White, T. The uphill battle of ant programming vs. genetic programming. In: International Joint Conference on Computational Intelligence (IJCCI); 2009, 171–176.
Kouchakpour, P, Zaknich, A, Bräuni, T. A survey and taxonomy of performance improvement of canonical genetic programming. Knowl Inform Syst 2009, 21:1–39. doi: 10.1007/s10115-008-0184-9.
Rojas, SA, Bentley, PJ. A grid‐based ant colony system for automatic program synthesis. In: Deb, K, Poli, R, Banzhaf, W, Beyer, H-G, Burke, EK, Darwen, PJ, Dasgupta, D, Floreano, D, Foster, JA, Harman, M, Holland, O, Lanzi, PL, Spector, L, Tettamanzi, A, Thierens, D, Tyrrell, AM, eds. Late Breaking papers at the Genetic and Evolutionary Computation Conference (GECCO‐2004); 2004, 1–12.
Chen, Y, Yang, B, Dong, J. Evolving flexible neural networks using ant programming and PSO algorithms. In: Yin, F-L, Wang, J, Guo, C, eds. Advances in Neural Networks. LNCS, vol. 3173. Berlin/Heidelberg: Springer; 2004. doi: 10.1007/978-3-540-28647-9_36.
Hara, A, Kushida, JI, Tanabe, S, Takahama, T. Parallel ant programming using genetic operators. In: 2013 IEEE Sixth International Workshop on Computational Intelligence Applications (IWCIA); 2013, 75–80. doi:10.1109/IWCIA.2013.6624788.
Boryczka, M, Czech, ZJ. Solving approximation problems by ant colony programming. In: Genetic and Evolutionary Computation Conference (GECCO); 2002, 39–46.
Boryczka, M, Czech, ZJ, Wieczorek, W. Ant colony programming for approximation problems. In: Genetic and Evolutionary Computation Conference (GECCO); 2003, 142–143.
Green, J, Whalley, JL, Johnson, CG, et al. Automatic programming with ant colony optimization. In: UK Workshop on Computational Intelligence. Loughborough University; 2004, 70–77.
Boryczka, M. Eliminating introns in ant colony programming. Fundam Inform 2005, 68:1–19.
Boryczka, M. Ant colony programming with the candidate list. In: Nguyen, N, Jo, G, Howlett, R, Jain, L, eds. Agent and Multi‐Agent Systems: Technologies and Applications. LNCS, vol. 4953. Berlin/Heidelberg: Springer; 2008, 302–311. doi: 10.1007/978-3-540-78582-8_31.
Boryczka, M. Ant Colony Programming: Application of Ant Colony System to Function Approximation. In Chiong, R, Ed. Intelligent Systems for Automated Learning and Adaptation: Emerging Trends and Applications (pp. 248–272). Hershey, PA: Information Science Reference; 2010. doi: 10.4018/978-1-60566-798-0.ch011.
Shirakawa, S, Ogino, S, Nagao, T. Automatic construction of programs using dynamic ant programming. In: Ant Colony Optimization Methods and Applications. InTech; 2011, 75. doi: 10.5772/13786.
Kumaresan, N. Optimal control for stochastic linear quadratic singular Takagi‐Sugeno fuzzy system using ant colony programming. Neural Parallel Sci Comput 2010, 18:89–108.
Kumaresan, N. Optimal control for stochastic singular integro‐differential Takagi‐Sugeno fuzzy system using ant colony programming. Filomat 2012, 26:415–426. doi: 10.2298/FIL1203415K.
Kumaresan, N, Balasubramaniam, P. Singular optimal control for stochastic linear quadratic singular system using ant colony programming. Int J Comput Math 2010, 87:3311–3327. doi: 10.1080/00207160903026634.
Hoai, N, McKay, R. A framework for tree adjunct grammar guided genetic programming. In: Post‐Graduate ADFA Conference on Computer Science (PACCS); 2001, 93–99.
Shan, Y, Abbass, H, Mckay, RI, Essam, D. AntTAG: a further study. In: Australia‐Japan Joint Workshop on Intelligent and Evolutionary Systems; 2002, 1–8.
Keber, C, Schuster, MG. Option valuation with generalized ant programming. In: Genetic and Evolutionary Computation Conference (GECCO); 2002, 74–81.
Keber, C, Schuster, M. Generalized ant programming in option pricing: determining implied volatilities based on american put options. In: Proceedings of the IEEE International Conference on Computational Intelligence for Financial Engineering (IEEE CIFER); 2003, 123–130. doi:10.1109/CIFER.2003.1196251.
Salehi‐Abari, A, White, T. Enhanced generalized ant programming (egap). In: Genetic and Evolutionary Computation Conference (GECCO). ACM; 2008, 111–118. doi: 10.1145/1389095.1389111.
Espejo, P, Ventura, S, Herrera, F. A survey on the application of genetic programming to classification. IEEE Trans Syst Man Cybern C Appl Rev 2010, 40:121–144. doi: 10.1109/TSMCC.2009.2033566.
Freitas, AA. A review of evolutionary algorithms for data mining. In: Maimon, O, Rokach, L, eds. Soft Computing for Knowledge Discovery and Data Mining. Springer; 2008, 79–111. doi: 10.1007/978-0-387-69935-6_4.
Parpinelli, R, Lopes, H, Freitas, A. Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 2002, 6:321–332. doi: 10.1109/TEVC.2002.802452.
Martens, D, De Backer, M, Vanthienen, J, Snoeck, M, Baesens, B. Classification with ant colony optimization. IEEE Trans Evol Comput 2007, 11:651–665. doi: 10.1109/TEVC.2006.890229.
Otero, FEB, Freitas, AA, Johnson, CG. Handling continuous attributes in ant colony classification algorithms. In: IEEE Symposium on Computational Intelligence and Data Mining (IEEE CIDM); 2009, 225–231.
Holden, N, Freitas, AA. A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J Artif Evol Appl 2008, 2008:2:1–2:11. doi: 10.1155/2008/316145.
Bojarczuk, CC, Lopes, HS, Freitas, AA, Michalkiewicz, EL. A constrained‐syntax genetic programming system for discovering classification rules: application to medical data sets. Artif Intell Med 2004, 30:27–48.
Frank, E, Witten, IH. Generating accurate rule sets without global optimization. In: International Conference on Machine Learning (ICML); 1998, 144–151.
Cohen, W. Fast effective rule induction. In: International Conference on Machine Learning (ICML); 1995, 115–123.
Olmo, JL, Romero, JR, Ventura, S. Classification rule mining using ant programming guided by grammar with multiple Pareto fronts. Soft Comput 2012, 16:2143–2163. doi: 10.1007/s00500-012-0883-8.
Cecilia, JM, García, JM, Nisbet, A, Amos, M, Ujaldón, M. Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 2013, 73:42–51. doi: 10.1016/j.jpdc.2012.01.002.
Cano, A, Olmo, JL, Ventura, S. Parallel multi‐objective ant programming for classification using GPUs. J Parallel Distrib Comput 2013, 73:713–728. doi: 10.1016/j.jpdc.2013.01.017.
Olmo, JL, Cano, A, Romero, JR, Ventura, S. Binary and multiclass imbalanced classification using multi‐objective ant programming. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA); 2012, 70–76. doi:10.1109/ISDA.2012.6416515.
Galar, M, Fernández, A, Barrenechea, E, Bustince, H, Herrera, F. An overview of ensemble methods for binary classifiers in multi‐class problems: experimental study on one‐vs‐one and one‐vs‐all schemes. Pattern Recog 2011, 44:1761–1776. doi: 10.1016/j.patcog.2011.01.017.
Olmo, JL, Luna, JM, Romero, JR, Ventura, S. Mining association rules with single and multi‐objective grammar guided ant programming. Integr Comput‐Aided Eng 2013, 20:217–234. doi: 10.3233/ICA-130430.
Olmo, JL, Romero, JR, Ventura, S. Single and multi‐objective ant programming for mining interesting rare association rules. Int J Hybrid Intell Syst 2014, 11:197–209. doi: 10.3233/HIS-140195.
Miller, J, Thomson, P. Cartesian genetic programming. In: Poli, R, Banzhaf, W, Langdon, W, Miller, J, Nordin, P, Fogarty, T, eds. Genetic Programming. LNCS, vol. 1802. Berlin/Heidelberg: Springer; 2000, 121–132. doi: 10.1007/978-3-540-46239-2_9.
Hara, A. Watanabe, M, Takahama, T. Cartesian ant programming. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2011; 3161–3166. doi:10.1109/ICSMC.2011.6084146.
Luis, S, dos Santos, MV. On the evolvability of a hybrid ant colony‐cartesian genetic programming methodology. In: EuroGP; 2013, 109–120. doi:10.1007/978-3-642-37207-0_10.
Bullnheimer, B, Hartl, RF, Strauss, C. A new rank based version of the ant system—a computational study. Cent Eur J Oper Res Econ 1997, 7:25–38.
Stützle, T, Hoos, HH. MAX‐MIN ant system. Future Gener Comput Syst 2000, 16:889–914.
Kennedy, J, Eberhart, R. Particle swarm optimization. In: IEEE International Conference on Neural Networks (ICNN), vol. 4; 1995, 1942–1948. doi:10.1109/ICNN.1995.488968.
O`Neill, M, Brabazon, A. Grammatical swarm. In: Genetic and Evolutionary Computation Conference (GECCO); 2004, 163–174.
O`Neill, M, Brabazon, A. Grammatical swarm: the generation of programs by social programming. Nat Comput 2006, 5:443–462. doi: 10.1007/s11047-006-9007-7.
O`Neill, M, Brabazon, A, Adley, C. The automatic generation of programs for classification problems with grammatical swarm. In: IEEE Congress on Evolutionary Computation, 2004 (CEC2004), vol. 1; 2004, 104–110. doi:10.1109/CEC.2004.1330844.
Ramstein, G, Beaume, N, Jacques, Y. A grammatical swarm for protein classification. In: 2008 IEEE Congress on Evolutionary Computation (CEC); 2008, 2561–2568. doi:10.1109/CEC.2008.4631142.
Ramstein, G, Beaume, N, Jacques, Y. Detection of remote protein homologs using social programming. In: Abraham, A, Hassanien, AE, de Carvalho, A, eds. Foundations of Computational Intelligence Volume 4. Studies in Computational Intelligence, vol. 204. Springer; 2009, 277–296. doi: 10.1007/978-3-642-01088-0_12.
O`Neill, M, Leahy, F, Brabazon, A. Grammatical swarm: a variable‐length particle swarm algorithm. In: Swarm Intelligent Systems, Studies in Computational Intelligence. Springer; 2006, 59–74.
Veenhuis, C, Koppen, M, Kruger, J, Nickolay, B. Tree swarm optimization: an approach to PSO‐based tree discovery. In: 2005 IEEE Congress on Evolutionary Computation (CEC), vol. 2; 2005, pp. 1238–1245. doi:10.1109/CEC.2005.1554832.
Togelius, J, Nardi, RD, Moraglio, A. Geometric PSO + GP = particle swarm programming. In: IEEE Congress on Evolutionary Computation; 2008, 3594–3600.
Qi, F, Ma, Y, Liu, X, Ji, G. A hybrid genetic programming with particle swarm optimization. In: Advances in Swarm Intelligence. LNCS, vol. 7929. Springer; 2013, 11–18. doi: 10.1007/978-3-642-38715-9_2.
Wedde, H, Farooq, M, Zhang, Y. Beehive: an efficient fault‐tolerant routing algorithm inspired by honey bee behavior. In: Dorigo, M, Birattari, M, Blum, C, Gambardella, L, Mondada, F, Stützle, T, eds. Ant Colony Optimization and Swarm Intelligence. LNCS, vol. 3172. Springer; 2004, 83–94. doi: 10.1007/978-3-540-28646-2_8.
Fathian, M, Amiri, B, Maroosi, A. Application of honey‐bee mating optimization algorithm on clustering. Appl Math Comput 2007, 190:1502–1513. doi: 10.1016/j.amc.2007.02.029.
Abbass, HA, Teo, J. A true annealing approach to the marriage in honey‐bees optimization algorithm. Int J Comput Intell Appl 2003, 3:199–211.
Jung, SH. Queen‐bee evolution for genetic algorithms. Electron Lett 2003, 39:575–576. doi: 10.1049/el:20030383.
Nakrani, S, Tovey, C. From honeybees to internet servers: biomimicry for distributed management of internet hosting centers. Bioinspir Biomim 2007, 2:182–197.
Rao, RS, Narasimham, SVL, Ramalingaraju, M. Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm. Int J Electr Power Energy Syst Eng 2008, 1:116–122.
Purnamadjaja, AH, Russell, RA. Pheromone communication in a robot swarm: necrophoric bee behaviour and its replication. Robotica 2005, 23:731–742. doi: 10.1017/S0263574704001225.
Lemmens, N, de Jong, S, Tuyls, K, Nowé, A. Bee behaviour in multi‐agent systems. In: Tuyls, K, Nowe, A, Guessoum, Z, Kudenko, D, eds. Adaptive Agents and Multi‐Agent Systems III. Adaptation and Multi‐Agent Learning. LNCS, vol. 4865. Springer; 2008, 145–156. doi: 10.1007/978-3-540-77949-0_11.
Gutierrez, R, Huhns, M. Multiagent‐based fault tolerance management for robustness. In: Schuster, A, ed. Robust Intelligent Systems. LNCS. Springer; 2008, 23–41. doi: 10.1007/978-1-84800-261-6_2.
Li, X, Shao, Z, Quian, J. An optimizing method based on autonomous animals: fish‐swarm algorithm. Syst Eng Theory Pract 2002, 22:32–38.
Neshat, M, Sepidnam, G, Sargolzaei, M, Toosi, A. Artificial fish swarm algorithm: a survey of the state‐of‐the‐art, hybridization, combinatorial and indicative applications. Artif Intell Rev 2012:1–33. doi: 10.1007/s10462-012-9342-2.
Liu, Q, Odaka, T, Kuroiwa, J, Ogura, H. Application of an artificial fish swarm algorithm in symbolic regression. IEICE Trans Inf Syst 2013, E96‐D:872–895.
Gandomi, A, Yang, XS, Alavi, A, Talatahari, S. Bat algorithm for constrained optimization tasks. Neural Comput Appl 2013, 22:1239–1255. doi: 10.1007/s00521-012-1028-9.
Yang, C, Tu, X, Chen, J. Algorithm of marriage in honey bees optimization based on the wolf pack search. In: International Conference on Intelligent Pervasive Computing (IPC); 2007, 462–467. doi:10.1109/IPC.2007.104.
Headleand, C, Teahan, W. Grammatical herding. J Comput Sci Syst Biol 2013, 6:43–47. doi: 10.4172/jcsb.1000099.
Headleand, C. Swarm based population seeding of grammatical evolution. J Comput Sci Syst Biol 2013, 6:132–135. doi: 10.4172/jcsb.1000110.
Yang, XS. Firefly algorithms for multimodal optimization. In: Watanabe, O, Zeugmann, T, eds. Stochastic Algorithms: Foundations and Applications. LNCS, vol. 5792. Springer; 2009, 169–178. doi: 10.1007/978-3-642-04944-6_14.
Husselmann, A, Hawick, K. Geometric firefly algorithms on graphical processing units. In: Yang, XS, ed. Cuckoo Search and Firefly Algorithm. Studies in Computational Intelligence, vol. 516. Springer; 2014, 245–269. doi: 10.1007/978-3-319-02141-6_12.
Gandomi, AH, Alavi, AH. Krill herd: a new bio‐inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 2012, 17:4831–4845. doi: 10.1016/j.cnsns.2012.05.010.
Gheraibia, Y, Moussaoui, A. Penguins search optimization algorithm (PeSOA). In: Recent Trends in Applied Artificial Intelligence. LNCS, vol. 7906. Springer; 2013, 222–231. doi: 10.1007/978-3-642-38577-3_23.
Cuevas, E, Cienfuegos, M. A new algorithm inspired in the behavior of the social‐spider for constrained optimization. Expert Syst Appl 2014, 41:412–425. doi: 10.1016/j.eswa.2013.07.067.
Pappa, G, Ochoa, G, Hyde, M, Freitas, A, Woodward, J, Swan, J. Contrasting meta‐learning and hyper‐heuristic research: the role of evolutionary algorithms. Genet Program Evolvable Mach 2014, 15:3–35. doi: 10.1007/s10710-013-9186-9.
Boryczka, M. Ant colony programming for approximation problems. In: Intelligent Information Systems. Advances in Soft Computing, vol. 17. Springer; 2002, 147–156. doi: 10.1007/978-3-7908-1777-5_15.
Leahy, F. Social programming: Investigations in grammatical swarm. MSc Thesis, University of Limerick, Ireland, 2005.
Si, T, De, A, Bhattacharjee, A. Grammatical swarm based‐adaptable velocity update equations in particle swarm optimizer. In: Satapathy, SC, Udgata, SK, Biswal, BN, eds. Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013. Advances in Intelligent Systems and Computing, vol. 247. Springer; 2014, 197–206. doi: 10.1007/978-3-319-02931-3_24.
Chen, Y, Dong, J, Yang, B. Automatic design of hierarchical TS‐FS model using ant programming and PSO algorithm. In: Bussler, C, Fensel, D, eds. Artificial Intelligence: Methodology, Systems, and Applications. LNCS, vol. 3192. Springer; 2004, 285–294. doi: 10.1007/978-3-540-30106-6_29.
Keber, C, Schuster, M. Collective intelligence in option pricing: determining black‐scholfs implied volatilities with generalized ant programming. In: World Automation Congress, vol. 17; 2004, 465–470.
de Mingo López, LF, Blas, NG, Arteta, A. The optimal combination: grammatical swarm, particle swarm optimization and neural networks. J Comput Sci 2012, 3:46–55. doi: 10.1016/j.jocs.2011.12.005.
Olmo, JL, Luna, JM, Romero, JR, Ventura, S. An automatic programming ACO‐based algorithm for classification rule mining. In: Trends in Practical Applications of Agents and Multiagent Systems. LNAI. Springer; 2010, 649–656. doi: 10.1007/978-3-642-12433-4_76.
Olmo, JL, Romero, JR, Ventura, S. A grammar based ant programming algorithm for mining classification rules. In: 2010 IEEE Congress on Evolutionary Computation (CEC); 2010, 1–8. doi:10.1109/CEC.2010.5586492.
Olmo, JL, Romero, JR, Ventura, S. Ant programming algorithms for classification. In: Alam, S, Dobbie, G, Koh, YS, ur Rehman, S, eds. Biologically‐Inspired Techniques for Knowledge Discovery and Data Mining. IGI Global, Hershey, PA, USA; 2014, 107–128. doi: 10.4018/978-1-4666-6078-6.ch005.
Olmo, JL, Romero, JR, Ventura, S. Multi‐objective ant programming for mining classification rules. In: Moraglio, A, Silva, S, Krawiec, K, Machado, P, Cotta, C, eds. Genetic Programming. LNCS, vol. 7244. Berlin/Heidelberg: Springer; 2012, 146–157. doi: 10.1007/978-3-642-29139-5_13.
Olmo, JL, Luna, JM, Romero, JR, Ventura, S. Association rule mining using a multi‐objective grammar‐based ant programming algorithm. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA); 2011, 971–977. doi:10.1109/ISDA.2011.6121784.
Martens, D, Baesens, B, Fawcett, T. Editorial survey: swarm intelligence for data mining. Mach Learn 2011, 82:1–42. doi: 10.1007/s10994-010-5216-5.
Darabos, C, Giacobini, M, Hu, T, Moore, J. Lévy‐flight genetic programming: towards a new mutation paradigm. In: Giacobini, M, Vanneschi, L, Bush, W, eds. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Lecture Notes in Computer Science, vol. 7246. Springer; 2012, 38–49. doi: 10.1007/978-3-642-29066-4_4.
White, T, Salehi‐Abari, A. A swarm‐based crossover operator for genetic programming. In: Genetic and Evolutionary Computation Conference (GECCO). ACM; 2008, 1345–1346. doi: 10.1145/1389095.1389356.
Jabeen, H, Baig, AR. GPSO: a framework for optimization of genetic programming classifier expressions for binary classification using particle swarm optimization. Int J Innovative Comput Inf Control 2012, 8:233–242.
Bouaziz, S, Dhahri, H, Alimi, AM, Abraham, A. A hybrid learning algorithm for evolving flexible beta basis function neural tree model. Neurocomputing 2013, 117:107–117. doi: 10.1016/j.neucom.2013.01.024.