Özturk, K. Community detection in social networks. Msc. Thesis. Graduate School of Natural and Applied Sciences, Middle East Technical University, 2014.
Tang, L, Liu, H. Community Detection and Mining in Social Media, Synthesis Lectures on Data Mining and Knowlegde Discovery. California: Morgan and Claypool; 2010.
Fasmer, EE. Community detection in social networks. Master Thesis. Department of Informatics, University of Bergen, 2015.
Barabási, A‐L, Albert, R. Emergence of scaling in random networks. Science 1999, 286:509–512. doi:10.1126/science.286.5439.509.
McPherson, M, Lovin, LS, Cook, JM. Birds of a feather: homophily in social networks. Annu Rev Sociol 2001, 27:415–444. doi:10.1146/annurev.soc.27.1.415.
Luce, RD, Perry, AD. A method of matrix analysis of group structure. Psychometrika 1949, 14:95–116. doi:10.1007/BF02289146.
Watts, DJ, Strogatz, SH. Collective dynamics of ‘small‐world`networks. Nature 1998, 393:440–442. doi:10.1038/30918.
Fortunato, S. Community detection in graphs. Phys Rep 2010, 486:75–174. doi:10.1016/j.physrep.2009.11.002.
Coscia, M, Giannotti, F, Pedreschi, D. A classification for community discovery methods in complex networks. Stat Anal Data Min 2011, 4:512–546. doi:10.1002/sam.10133.
Fortunato, S, Castellano, C. Community structure in graphs. In: Computational Complexity. New York: Springer; 2012, 490–512. doi:10.1007/978-1-4614-1800-9_33.
Porter, MA, Onnela, J‐P, Mucha, PJ. Communities in networks. Notices Amer Math Soc 2009, 56:1082–1097.
Danon, L, Diaz‐Guilera, A, Duch, J, Arenas, A. Comparing community structure identification. J Stat Mech Theory Exp 2005, 09:P09008. doi:10.1088/1742-5468/2005/09/P09008.
Plantié, M, Crampes, M. Survey on social community detection. In: Social Media Retrieval Computer Communications and Networks. London: Springer-Verlag; 2013, 65–85. doi:10.1007/978-1-4471-4555-4_4.
Kernighan, BW, Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 1970, 49:291–307. doi:10.1002/j.1538-7305.1970.tb01770.x.
Newman, M. Community detection and graph partitioning. Europhys Lett 2013, 103:28003. doi:10.1209/0295-5075/103/28003.
Karrer, B, Newman, M. Stochastic blockmodels and community structure in networks. Phys Rev E 2011, 83:016107. doi:10.1103/PhysRevE.83.016107.
Fiedler, M. Algebraic connectivity of graphs. Czechoslov Math J 1973, 23:298–305.
Pothen, A, Simon, HD, Liou, K‐P. Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal Appl 1990, 11:430–452. doi:10.1137/0611030.
Girvan, M, Newman, M. Community structure in social and biological networks. Proc Natl Acad Sci 2002, 99:7821–7826. doi:10.1073/pnas.122653799.
Newman, M, Girvan, M. Finding and evaluating community structure in networks. Phys Rev E 2004, 69:026113. doi:10.1103/PhysRevE.69.026113.
Rattigan, MJ, Maier, M, Jensen, D. Graph clustering with network structure indices. In: Proceedings of the 24th International Conference on Machine Learning(ICML), 2007, 783–790. ACM, doi: 10.1145/1273496.1273595.
Chen, J, Yuan, B. Detecting functional modules in the yeast protein‐protein interaction network. Bioinformatics 2006, 22:2283–2290. doi:10.1093/bioinformatics/btl370.
Holme, P, Huss, M, Jeong, H. Subnetwork hierarchies of biochemical pathways. Bioinformatics 2003, 19:532–538.
Pinney, JW, Westhead, DR. Betweenness‐based decomposition methods for social and biological networks. In: Interdisciplinary Statistics and Bioinformatics. UK: Leeds University Press; 2006, 87–90.
Gregory, S. An algorithm to find overlapping community structure in networks. In: Knowledge Discovery in Databases. PKDD Berlin Heidelberg: Springer-Verlag; 2007, LNAI 4702:91–102. doi:10.1007/978-3-540-74976-9_12.
Guimera, R, Danon, L, Diaz‐Guilera, A, Giralt, F, Arenas, A. Self‐similar community structure in a network of human interactions. Phys Rev E 2003, 68:065103. doi:10.1103/PhysRevE.68.065103.
Arenas, A, Danon, L, Diaz‐Guilera, A, Gleiser, PM, Guimera, R. Community analysis in social networks. Eur Phys J B 2004, 38:373–380. doi:10.1140/epjb/e2004-00130-1.
Tyler, JR, Wilkinson, DM, Huberman, BA. E‐mail as spectroscopy: automated discovery of community structure within organizations. Inf Soc 2005, 21:143–153.
Radicchi, F, Castellano, C, Cecconi, F, Loreto, V, Parisi, D. Defining and identifying communities in networks. Proc Natl Acad Sci U S A 2004, 101:2658–2663. doi:10.1073/pnas.0400054101.
Moon, S, Lee, J‐G, Kang, M, Choy, M, Lee, J‐w. Parallel community detection on large graphs with MapReduce and GraphChi. Data Knowl Eng 2015, In Press. doi:10.1016/j.datak.2015.05.001.
Newman, M. Fast algorithm for detecting community structure in networks. Phys Rev E 2004, 69:066133. doi:10.1103/PhysRevE.69.066133.
Newman, M. Analysis of weighted networks. Phys Rev E 2004, 70:056131. doi:10.1103/PhysRevE.70.056131.
Newman, M. Modularity and community structure in networks. Proc Natl Acad Sci 2006, 103:8577–8582. doi:10.1073/pnas.0601602103.
Clauset, A, Newman, ME, Moore, C. Finding community structure in very large networks. Phys Rev E 2004, 70:066111. doi:10.1103/PhysRevE.70.066111.
Blondel, VD, Guillaume, JL, Lambiotte, R, Lefebvre, E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008, 2008:10008. doi:10.1088/1742-5468/2008/10/P10008.
Guimera, R, Sales‐Pardo, M, Amaral, LAN. Modularity from fluctuations in random graphs and complex networks. Phys Rev E 2004, 70:025101. doi:10.1103/PhysRevE.70.025101.
Zhou, Z, Wang, W, Wang, L. Community detection based on an improved modularity. Pattern Recognition 2012, CCIS 321:638–645. doi:10.1007/978-3-642-33506-8_78.
Duch, J, Arenas, A. Community detection in complex networks using extremal optimization. Phys Rev E 2005, 72:027104. doi:10.1103/PhysRevE.72.027104.
Ye, Z, Hu, S, Yu, J. Adaptive clustering algorithm for community detection in complex networks. Phys Rev E 2008, 78:046115. doi:10.1103/PhysRevE.78.046115.
Wahl, S, Sheppard, J. Hierarchical fuzzy spectral clustering in social networks using spectral characterization. In: The Twenty‐Eighth International Flairs Conference, 2015, 305–310.
Falkowski, T, Barth, A, Spiliopoulou, M. DENGRAPH: A density‐based community detection algorithm. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), Fremont, CA, 2007, 112–115. doi:10.1109/WI.2007.74.
Dongen, SV. Graph clustering by flow simulation. PhD thesis, University of Utrecht, 2000.
Nikolaev, AG, Razib, R, Kucheriya, A. On efficient use of entropy centrality for social network analysis and community detection. Soc Networks 2015, 40:154–162. doi:10.1016/j.socnet.2014.10.002.
Steinhaeuser, K, Chawla, NV. Identifying and evaluating community structure in complex networks. Pattern Recogn Lett 2010, 31:413–421. doi:10.1016/j.patrec.2009.11.001.
Chen, Y, Huang, C, Zhai, K. Scalable community detection algorithm with MapReduce. Commun ACM 2009, 53:359–366. doi:10.1147/JRD.2013.2251982.
Pizzuti, C. GA‐Net: a genetic algorithm for community detection in social networks. In: Parallel Problem Solving from Nature–PPSN X. Berlin Heidelberg: Springer-Verlag; 2008, LNCS 5199:1081–1090. doi:10.1007/978-3-540-87700-4_107.
Pizzuti, C. A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans Evol Comput 2012, 16:418–430. doi:10.1109/TEVC.2011.2161090.
Hafez, AI, Ghali, NI, Hassanien, AE, Fahmy, AA. Genetic algorithms for community detection in social networks. In: 12th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE, 2012, 460–465.doi:10.1109/ISDA.2012.6416582.
Mazur, P, Zmarzlowski, K, Orlowski, AJ. A genetic algorithms approach to community detection. Acta Phys Pol A 2010, 117:703–705.
Liu, X, Li, D, Wang, S, Tao, Z. Effective algorithm for detecting community structure in complex networks based on GA and clustering. In: International Conference on Computational Science (ICCS 07), Springer, 2007, 657–664. doi: 10.1007/978-3-540-72586-2_95.
Tasgin, M, Herdagdelen, A, Bingol, H. Community detection in complex networks using genetic algorithms. 2007, arXiv preprint arXiv: 0711.0491.
Zadeh, PM, Kobti, Z. A multi‐population cultural algorithm for community detection in social networks. Procedia Comput Sci 2015, 52:342–349. doi:10.1016/j.procs.2015.05.105.
Nicosia, V, Mangioni, G, Carchiolo, V, Malgeri, M. Extending the definition of modularity to directed graphs with overlapping communities. J Stat Mech Theory Exp 2009, 3:P03024. doi:10.1088/1742-5468/2009/03/P03024.
Raghavan, UN, Albert, R, Kumara, S. Near linear time algorithm to detect community structures in large‐scale networks. Phys Rev E 2007, 76:036106. doi:10.1103/PhysRevE.76.036106.
Xie, J, Szymanski, BK. Towards linear time overlapping community detection in social networks. In: Advances in Knowledge Discovery and Data Mining. Berlin Heidelberg: Springer‐Verlag; 2012, LNAI 7302:25–36.
Hu, W. Finding statistically significant communities in networks with weighted label propagation. Soc Netw 2013, 2:138–146. doi:10.4236/sn.2013.23012.
Gregory, S. Finding overlapping communities in networks by label propagation. New J Phys 2010, 12:103018. doi:10.1088/1367-2630/12/10/103018.
Xie, J, Szymanski, BK. Labelrank: a stabilized label propagation algorithm for community detection in networks. In: IEEE Network Science Workshop (NSW), 2013, 138–143.
Wu, Z‐H, Lin, Y‐F, Gregory, S, Wan, H‐Y, Tian, S‐F. Balanced multi‐label propagation for overlapping community detection in social networks. J Comput Sci Technol 2012, 27:468–479. doi:10.1007/s11390-012-1236-x.
Xie, J, Chen, M, Szymanski, BK. LabelrankT: incremental community detection in dynamic networks via label propagation. In: Proceedings of the Workshop on Dynamic Networks Management and Mining(DyNetMM), 2013, ACM, 25–32, doi:10.1145/2489247.2489249.
Blei, DM, Ng, AY, Jordan, MI. Latent dirichlet allocation. J Mach Learn Res 2003, 3:993–1022.
Xin, Y, Yang, J, Xie, Z‐Q. A semantic overlapping community detection algorithm based on field sampling. Expert Syst Appl 2015, 42:366–375. doi:10.1016/j.eswa.2014.07.009.
Xin, Y, Yang, J, Xie, Z‐Q, Zhang, J‐P. An overlapping semantic community detection algorithm base on the ARTs multiple sampling models. Expert Syst Appl 2015, 42:3420–3432. doi:10.1016/j.eswa.2014.11.029.
Xia, Z, Bu, Z. Community detection based on a semantic network. Knowl‐Based Syst 2012, 26:30–39. doi:10.1016/j.knosys.2011.06.014.
Ding, Y. Community detection: topological vs. topical. J Informetr 2011, 5:498–514. doi:10.1016/j.joi.2011.02.006.
Erétéo, G, Gandon, F, Buffa, M. Semtagp: Semantic community detection in folksonomies. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 1, IEEE Computer Society, 2011, 324–331, doi:10.1109/WI-IAT.2011.98.
Zhao, Z, Feng, S, Wang, Q, Huang, JZ, Williams, GJ, Fan, J. Topic oriented community detection through social objects and link analysis in social networks. Knowl‐Based Syst 2012, 26:164–173. doi:10.1016/j.knosys.2011.07.017.
Abdelbary, HA, El‐Korany, A. Semantic topics modeling approach for community detection. Int J Comput Appl 2013, 81:50–58. doi:10.5120/14020-2177.
Deerwester, SC, Dumais, ST, Landauer, TK, Furnas, GW, Harshman, RA. Indexing by latent semantic analysis. J Am Soc Inform Sci 1990, 41:391–407.
Nguyen, T, Phung, D, Adams, B, Tran, T, Venkatesh, S. Hyper‐community detection in the blogosphere. In: Proceedings of second ACM SIGMM workshop on Social media, WSM, ACM, 2010, 21–26. doi:10.1145/1878151.1878159.
Natarajan, N, Sen, P, Chaoji, V. Community detection in content‐sharing social networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining(ASONAM), ACM, 2013, 82–89. doi:10.1145/2492517.2492546.
Amelio, A, Pizzuti, C. Overlapping community discovery methods: a survey. In: Social Networks: Analysis and Case Studies. Weinheim: Springer-Verlag; 2014, Lecture Notes in Social Networks: 105–125. doi:10.1007/978-3-7091-1797-2_6.
Xie, J, Kelley, S, Szymanski, BK. Overlapping community detection in networks: the state‐of‐the‐art and comparative study. ACM Comput Surv 2013, 45:1–35. doi:10.1145/2501654.2501657.
Palla, G, Derenyi, I, Farhas, I, Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435:814–818. doi:10.1038/nature03607.
Lancichinetti, A, Fortunato, S, Kertész, J. Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 2009, 11:033015. doi:10.1088/1367-2630/11/3/033015.
Du, N, Wu, B, Pei, X, Wang, B, Xu, L. Community detection in large‐scale social networks. In: Proceedings of the 9th WebKDD and 1st SNA‐KDD 2007 workshop on Web mining and social network analysis, ACM, 2007, 16–25. doi:10.1145/1348549.1348552.
Shen, H, Cheng, X, Cai, K, Hu, M‐B. Detect overlapping and hierarchical community structure in networks. Phys A Stat Mech Appl 2009, 388:1706–1712. doi:10.1016/j.physa.2008.12.021.
Evans, T, Lambiotte, R. Line graphs, link partitions, and overlapping communities. Phys Rev E 2009, 80:016105. doi:10.1103/PhysRevE.80.016105.
Evans, T, Lambiotte, R. Line graphs of weighted networks for overlapping communities. Euro Phys J B 2010, 77:265–272. doi:10.1140/epjb/e2010-00261-8.
Evans, TS. Clique graph and overlapping communities. J Stat Mech Theory Exp 2010, 12:12037. doi:10.1088/1742-5468/2010/12/P12037.
Lee, C, Reid, F, McDaid, A, Hurley, N. Detecting highly overlapping community structure by greedy clique expansion. 2010, arXiv preprint arXiv:1002.1827.
Gregory, S. A fast algorithm to find overlapping communities in networks. In: ECML PKDD : European Conference on Machine Learning and Knowledge Discovery in Databases ‐ Part I, Springer, 2008, 408–423. doi:10.1007/978-3-540-87479-9_45.
Gregory, S. Finding overlapping communities using disjoint community detection algorithms. In: Complex Networks. Berlin Heidelberg: Springer-Verlag; 2009, SCI 207:47–61. doi:10.1007/978-3-642-01206-8_5.
Pizzuti, C. Overlapped community detection in complex networks. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, ACM, 2009, 859‐866. doi:10.1145/1569901.1570019.
Lancichinetti, A, Radicchi, F, Ramasco, JJ, Fortunato, S. Finding statistically significant communities in networks. PLoS One 2011, 6:e18961. doi:10.1371/journal.pone.0018961.
Baumes, J, Goldberg, MK, Krishnamoorthy, MS, Magdon‐Ismail, M, Preston, N. Finding communities by clustering a graph into overlapping subgraphs. In: IADIS International Conference on Applied Computing, 2005, 97–104.
Chen, W, Liu, Z, Sun, X, Wang, Y. A game‐theoretic framework to identify overlapping communities in social networks. Data Min Knowl Disc 2010, 21:224–240. doi:10.1007/s10618-010-0186-6.
Alvari, H, Hashemi, S, Hamzeh, A. Detecting overlapping communities in social networks by game theory and structural equivalence concept. In: Artificial Intelligence and Computational Intelligence. Berlin Heidelberg: Springer-Verlag; 2011, LNAI 7003:620–630. doi:10.1007/978-3-642-23887-1_79.
Alvari, H, Hajibagheri, A, Sukthankar, G. Community detection in dynamic social networks: A game‐theoretic approach. In: Proceedings of Advances in Social Networks Analysis and Mining (ASONAM), IEEE, 2014, 101‐107.
Shi, C, Cai, Y, Fu, D, Dong, Y, Wu, B. A link clustering based overlapping community detection algorithm. Data Knowl Eng 2013, 87:394–404. doi:10.1016/j.datak.2013.05.004.
Xing, Y, Meng, F, Zhou, Y, Zhou, R. Overlapping community detection by local community expansion. J Inform Sci Eng 2015, 31:1213–1232.
Bhat, SY, Abulaish, M. OCMiner: a density‐based overlapping community detection method for social networks. Intelli Data Anal 2015, 19:1–31. doi:10.3233/IDA-150751.
Zhang, H, King, I, Lyu, MR. Incorporating implicit link preference into overlapping community detection. In: Twenty‐Ninth AAAI Conference on Artificial Intelligence, 2015, 396–402.
Kozdoba, M, Mannor, S. Overlapping community detection by online cluster aggregation. 2015, arXiv preprint arXiv:1504.06798 .
Whang, JJ, Gleich, DF, Dhillon, IS. Overlapping community detection using seed set expansion. In: Proceedings of the 22nd ACM International Conference on Information %26 Knowledge Management(CIKM), ACM, San Francisco, CA, Oct 27-Nov 1 2013, 2099–2108. doi:10.1145/2505515.2505535.
Rees, BS, Gallagher, KB. Overlapping community detection by collective friendship group inference. In: International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE, 2010, 375‐379, doi:10.1109/ASONAM.2010.28.
Everett, MG, Borgatti, SP. Analyzing clique overlap. Connnections 1998, 21:49–61.
Adamcsek, B, Palla, G, Farkas, IJ, Dere`nyi, I, Vicsek, T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 2006, 22:1021–1023. doi:10.1093/bioinformatics/btl039.
Bansal, S, Bhowmick, S, Paymal, P. Fast community detection for dynamic complex networks. In: Complex Networks. Berlin Heidelberg: Springer-Verlag; 2011, CCIS 116:196–207. doi:10.1007/978-3-642-25501-4_20.
Berger‐Wolf, TY, Saia, J. A framework for analysis of dynamic social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2006, 523–528, doi:10.1145/1150402.1150462.
Tantipathananandh, C, Berger‐Wolf, T, Kempe, D. A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2007, 717–726. doi:10.1145/1281192.1281269.
Lin, Y‐R, Chi, Y, Zhu, S, Sundaram, H, Tseng, BL. FacetNet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web, ACM, 2008, 685–694. doi:10.1145/1367497.1367590.
Palla, G, Barabási, A‐L, Vicsek, T. Quantifying social group evolution. Nature 2007, 446:664–667. doi:10.1038/nature05670.
Greene, D, Doyle, D, Cunningham, P. Tracking the evolution of communities in dynamic social networks. In: International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE, 2010, 176–183. doi:10.1109/ASONAM.2010.17.
He, J, Chen, D. A fast algorithm for community detection in temporal network. Phys A Stat Mech Appl 2015, 429:87–94. doi:10.1016/j.physa.2015.02.069.
Dinh, TN, Nguyen, NP, Thai, MT. An adaptive approximation algorithm for community detection in dynamic scale‐free networks. In: 32th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), IEEE Press, 2013, 55–59, doi:10.1109/INFCOM.2013.6566734.
Nguyen, NP, Dinh, TN, Shen, Y, Thai, MT. Dynamic social community detection and its applications. PLoS One 2014, 9:e91431. doi:10.1371/journal.pone.0091431.
Takaffoli, M, Sangi, F, Fagnan, J, Zäıane, OR. Community evolution mining in dynamic social networks. Procedia Soc Behav Sci 2011, 22:49–58.
Kim, M‐S, Han, J. A particle‐and‐density based evolutionary clustering method for dynamic networks. Proc VLDB Endow 2009, 2:622–633. doi:10.14778/1687627.1687698.
Chi, Y, Song, X, Zhou, D, Hino, K, Tseng, BL. On evolutionary spectral clustering. ACM Trans Knowl Discov Data 2009, 3:17. doi:10.1145/1631162.1631165.
Folino, F, Pizzuti, C. An evolutionary multiobjective approach for community discovery in dynamic networks. IEEE Trans Knowl Data Eng 2014, 26:1838–1852.
Kim, M‐S, Han, J. CHRONICLE: A two‐stage density‐based clustering algorithm for dynamic networks. In: Discovery Science,12th International Conference, DS Springer, 2009, 152–167. doi:10.1007/978-3-642-04747-3_14.
Zachary, WW. An information flow model for conflict and fission in small groups. J Anthropol Res 1977, 33:452–473.
Lusseau, D, Schneider, K, Boisseau, OJ, Haase, P, Slooten, E, Dawson, SM. The bottlenose dolphin community of doubtful sound features a large proportion of long‐lasting associations. Behav Ecol Sociobiol 2003, 54:396–405. doi:10.1007/s00265-003-0651-y.
Davis, A, Gardner, BB, Gardner, MR. Deep South: A Social Anthropological Study of Caste and Class. Columbia: University of South Carolina Press; 2009.
Lancichinetti, A, Fortunato, S. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys Rev E 2009, 80:016118. doi:10.1103/PhysRevE.80.016118.
Newman, M, Network Data, http://www‐personal.umich.edu/~mejn/netdata/. (Accessed Sept. 23, 2015).
Leskovec, J, Krevl, A. SNAP datasets: Stanford Large Network Dataset Collection, https://snap.stanford.edu/data/. (Accessed Sept. 23, 2015).
Cao, C, Ni, Q, Zhai, Y. An improved collaborative filtering recommendation algorithm based on community detection in social networks. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, ACM, 2015, 1–8, doi:10.1145/2739480.2754670.
Zalmout, N, Ghanem, M. Multidimensional community detection in Twitter. In: 8th International Conference on Internet Technology and Secured Transactions (ICITST), 2013, IEEE, 83–88. doi:10.1109/ICITST.2013.6750167.
Zhang, Z, Li, Q, Zeng, D, Gao, H. Extracting evolutionary communities in community question answering. J Assoc Inform Sci Tech 2014, 65:1170–1186. doi:10.1002/asi.23003.