Tenopir, C, Allard, S, Douglass, K, Aydinoglu, AU, Wu, L, Read, E, Manoff, M, Frame, M. Data sharing by scientists: practices and perceptions. PLoS ONE 2011, 6:1–21.
Ferguson, AR, Nielson, JL, Cragin, MH, Bandrowski, AE, Martone, ME. Big data from small data: data‐sharing in the‘long tail’ of neuroscience. Nat Neurosci 2014, 17:1442–1447.
Owens, B. Montreal institute going ‘open’ to accelerate science. Science 2016, 351:329.
Chin, Jr G, Lansing, CS. Capturing and supporting contexts for scientific data sharing via the biological sciences collaboratory. In: Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work. New York: ACM; 2004, 409–418.
Chen, CLP, Zhang, CY. Data‐intensive applications, challenges, techniques and technologies: a survey on Big Data. Inform Sci 2014, 275:314–347.
Breeze, JL, Poline, JB, Kennedy, DN. Data sharing and publishing in the field of neuroimaging. Gigascience 2012, 1:9.
Teeters, JL, Harris, KD, Millman, KJ, Olshausen, BA, Sommer, FT. Data sharing for computational neuroscience. Neuroinformatics 2008, 6:47–55.
Grillner, S, Ip, N, Koch, C, Koroshetz, W, Okano, H, Polachek, M, Poo, MM, Sejnowski, TJ. Worldwide initiatives to advance brain research. Nat Neurosci 2016, 19:1–5.
Hutchinson, JA. Data sharing. Transplantation 2015, 99:649–650.
Cash, S, Hochberg, L. The emergence of single neurons in clinical neurology. Neuron 2015, 86:79–91.
Brinkmann, BH, Bower, MR, Stengel, KA, Worrell, GA, Stead, M. Large‐scale electrophysiology: acquisition, compression, encryption, and storage of big data. J Neurosci Methods 2009, 180:185–192.
McGregor, C. Big Data in neonatal intensive care. Computer 2013, 46:54–59.
Friedenberg, DA, Bouton, CE, Annetta, NV, Skomrock, N, Zhang, MM, Schwemmer, M, Bockbrader, MA, Mysiw, WJ, Rezai, AR, Bresler, HS, et al.. Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface. In: International Conference of the IEEE Engineering in Medicine and Biology Society, 2016, 3084–3087.
Ping, L, Sallam, K, Wu, H, Li, YX, Itzhaki, I, Garg, P, Zhang, Y, Termglichan, V, Lan, F, Gu, MX, et al. Patient‐specific and genome‐edited induced pluripotent stem cell‐derived cardiomyocytes elucidate single‐cell phenotype of Brugada syndrome. J Am Coll Cardiol 2016, 68:2086–2096.
Costa, V, Aigner, S, Vukcevic, M, Sauter, E, Behr, K, Ebeling, M, Dunkley, T, Friedlein, A, Zoffmann, S, Meyer, CA, et al. mTORC1 inhibition corrects neurodevelopmental and synaptic alterations in a human stem cell model of tuberous sclerosis. Cell Rep 2016, 15:86–95.
Ali, A, Qureshi, SF. Heat shock protein 70 gene polymorphisms’ influence on the electrophysiology of long QT syndrome. J Interv Card Electrophysiol 2016, 45:1–12.
Müller, VC, Bostrom, N. Future progress in artificial intelligence: a survey of expert opinion. In: Fundamental Issues of Artificial Intelligence. Switzerland: Springer International Publishing; 2016, 9–11.
Yamins, DL, Dicarlo, JJ. Using goal‐driven deep learning models to understand sensory cortex. Nat Neurosci 2016, 19:356–365.
Li, Y, Sun, R, Wang, Y, Li, HY, Zheng, XF. A novel robot system integrating biological and mechanical intelligence based on dissociated neural network‐controlled closed‐loop environment. PLoS ONE 2016, 11:1–21.
Capogrosso, M, Milekovic, T, Borton, D, Wagner, F, Moraud, EM, Mignardot, JB, Buse, N, Gandar, J, Barraud, Q, Xing, D, et al. A brain‐spine interface alleviating gait deficits after spinal cord injury in primates. Nature 2016, 539:284–288.
Schadt, EE, Linderman, MD, Jon, S, Lawrence, L, Garry, PN. Computational solutions to large‐scale data management and analysis. Nat Rev Genet 2010, 11:647–657.
Wang, W, Krishnan, E. Big data and clinicians: a review on the state of the science. JMIR Med Inform 2014, 2(1):e1(p1–p11).
Sejnowski, TJ, Churchland, PS, Movshon, JA. Putting big data to good use in neuroscience. Nat Neurosci 2014, 17:1440–1441.
Smith, LS. Why sharing matters for electrophysiological data analysis. Brain Res Bull 2015, 119:145–149.
Mohammed, EA, Far, BH, Naugler, C. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends. BioData Min 2014, 7:1–23.
Kitchenham, B, Brereton, P. A systematic review of systematic review process research in software engineering. Inf Softw Technol 2013, 55:2049–2075.
Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering (EASE 2014), New York: ACM; 2014, 321–330.
Petersen, K, Vakkalanka, S, Kuzniarz, L. Guidelines mapping studies in software engineering: an update. Inf Softw Technol 2015, 64:1–18.
Wagenaar, JB, Brinkmann, BH, Ives, Z, Worrell, GA, Litt, B. A multimodal platform for cloud‐based collaborative research. In: IEEE International IEEE/EMBS Conference on Neural Engineering, 2013, 1386–1389.
Kini, LG, Davis, KA, Wagenaar, JB. Data integration: combined imaging and electrophysiology data in the cloud. Neuroimage 2015, 124(Pt. B):1175–1181.
Weeks, M, Jessop, M, Fletcher, M, Hodge, V, Jackson, T, Austin, J. The CARMEN software as a service infrastructure. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371:1970.
Bower, MR, Stead, M, Brinkmann, BH, Dufendach, K, Worrell, GA. Metadata and annotations for multi‐scale electrophysiological data. In: Engineering in Medicine and Biology Society, 2009, EMBC 2009, Annual International Conference of the IEEE, 2009, 2811–2814.
Brinkmann, BH, Bower, MR, Stengel, K, Worrell, GA. Multiscale electrophysiology format: an open‐source electrophysiology format using data compression, encryption, and cyclic redundancy check. Engineering in Medicine and Biology Society, 2009, EMBC 2009, Annual International Conference of the IEEE, 2009, 7083–7086.
Eglen, SJ, Weeks, M, Jessop, M, Simonotto, J, Jackson, T, Sernagor, E. A data repository and analysis framework for spontaneous neural activity recordings in developing retina. GigaScience 2014, 3:1–12.
Liang, B, Fletcher, M, Austin, J. The design and implementation of a Neurophysiology Data translation Format (NDF). In: Ninth UK e‐Science All Hands Meeting (AHM 2010), Cardiff, UK, 16th September 2010.
McKeown, N. Software‐defined networking. In: Proc. of the INFOCOM Key Note. April 21, 2009. http://infocom2009.ieee‐infocom.org/technicalProgram.htm
Tan, W, Fong, L, Liu, Y. Effectiveness assessment of solid‐state drive used in big data services. In: IEEE International Conference on Web Services. Los Alamitos, CA: IEEE Computer Society; 2014, 393–400.
Kim, H, Seshadri, S, Dickey, CL, Chiu, L. Evaluating phase change memory for enterprise storage systems: a study of caching and tiering approaches. In: Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST 14), 2014, 33–45.
Trigo, JD, Alesanco, Á, Martínez, I, García, J. A review on digital ECG formats and the relationships between them. IEEE Trans Inf Technol Biomed 2012, 16:432–444.
Bond, RR, Finlay, DD, Nugent, CD, Moore, G. A review of ECG storage formats. Int J Med Inform 2011, 80:681–697.
Schlögl, A. An overview on data formats for biomedical signals. In: World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, September 7–12, 2009.
Bigdelyshamlo, N, Makeig, S, Robbins, KA. Preparing laboratory and real‐world EEG data for large‐scale analysis: a containerized approach. Front Neuroinform 2016, 10:1–14.
Bigdelyshamlo, N, Cockfield, J, Makeig, S, Rognon, T, Valle, CL, Miyakoshi, M, Robbins, KA. Hierarchical event descriptors (HED): semi‐structured tagging for real‐world events in large‐scale EEG. Front Neuroinform 2016, 10:1–13.
Movva, S, Ramachandran, R, Li, X, Khaire, S, Keiser, K, Conover, H, Graves, S. Syntactic and semantic metadata integration for science data use. Comput Geosci 2005, 31:1126–1134.
Gibson, F, Overton, PG, Smulders, TV, Schultz, SR, Eglen, SJ, Ingram, CD, Panzeri, S, Bream, P, Whittington, M, Sernagor, E, et al. Minimum information about a neuroscience investigation (MINI): electrophysiology. Nat Precedings 2008:1–8.
Bunakov, V, Griffin, T, Matthews, B, Cozzini, S. Metadata for Nanoscience Experiments. Proceedings of the XVIII International Conference Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL`2016), Ershovo, Russia, October 11 ‐ 14, 2016, 1–4.
Santana, MAA, Guimarães, PLO, Almêida, ES, Eklin, T. The importance of metrological metadata in the environmental monitoring. J Phys: Conf Ser 2016, 733:1–6.
Qin, J, Li, K. How portable are the metadata standards for scientific data? A proposal for a metadata infrastructure. Proceedings of the International Conference on Dublin Core and Metadata Applications, 2013, 25–34.
Papez, V, Moucek, R. Data and metadata models in electrophysiology domain: separation of data models into semantic hierarchy and its integration into EEGBase. In: 2013 I.E. International Conference on Bioinformatics and Biomedicine (BIBM), 2013, 539–543.
Le, FY, Anita, B, Petr, B, Václav, P, Jan, G, Roman, M, Tripathy, SJ, Wachtler, T. Describing neurophysiology data and metadata with OEN, the Ontology for Experimental Neurophysiology. Front Neuroinform 2014, 8:1141–1144.
Ordonez, C, Song, IY, Garcia‐Alvarado, C. Relational versus non‐relational database systems for data warehousing. In: Proceedings of the ACM 13th International Workshop on Data Warehousing and OLAP. New York: ACM; 2010, 67–68.
Jacobs, A. The pathologies of big data. Commun ACM 2009, 52:36–44.
Coulter, T. Costing: non‐traditional data stores versus traditional DBMS technologies. In: Technology Management in the Energy Smart World (PICMET), 2011 Proceedings of PICMET’11: IEEE, 2011, 1–15.
Loebman, S, Nunley, D, Kwon, YC, Howe, B, Balazinska, M, Gardner, JP. Analysing massive astrophysical datasets: can Pig/Hadoop or a relational DBMS help? In: IEEE International Conference on Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE, Piscataway, NJ 08854 USA 2009, 1–10.
Pavlo, A, Paulson, E, Rasin, A, Abadi, DJ, DeWitt, DJ, Madden, S, Stonebraker, M. A comparison of approaches to large‐scale data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. New York: ACM; 2009, 165–178.
Madden, S. From databases to big data. IEEE Internet Comput 2012, 3:4–6.
Han, J, Haihong, E, Le, G, Du, J. Survey on NoSQL database. In: 2011 6th International Conference on Pervasive Computing and Applications (ICPCA). Lanzhou, China: IEEE; 2011, 363–366.
Pokorny, J. NoSQL databases: a step to database scalability in web environment. Int J Web Inf Syst 2013, 9:69–82.
Indrawan‐Santiago, M. Database research: are we at a crossroad? Reflection on NoSQL. 2012 15th International Conference on Network‐Based Information Systems (NBiS). Los Alamitos: IEEE Computer Society; 2012, 45–51.
Gilbert, S, Lynch, N. Brewer`s conjecture and the feasibility of consistent, available, partition‐tolerant web services. SIGACT News 2002, 33:51–59. https://doi.org/10.1145/564585.564601.
Brewer, EA. Towards robust distributed systems. In: Proceedings of the Annual ACM Symposium on Principles of Distributed Computing, 2000, 7–10.
Moniruzzaman, ABM, Hossain, SA. Nosql database: new era of databases for big data analytics‐classification, characteristics and comparison. International Journal of Database Theory and Application 2013,6(4):1–14.
Levy, E, Silberschatz, A. Distributed file systems: concepts and examples. ACM Comput Surv (CSUR) 1990, 22:321–374.
Thanh, TD, Mohan, S, Choi, E, Kim, SB, Kim, P. A taxonomy and survey on distributed file systems. In: Fourth International Conference on Networked Computing and Advanced Information Management, 2008. NCM’08. Los Alamitos, CA: IEEE; 2008, 144–149.
Blomer, J. A survey on distributed file system technology. J Phys: Conf Ser 2015, 608:012039.
Zhou, Y. Large Scale Distributed File System Survey. Bloomington, IN: Indiana University Bloomington; 2013.
Ware, C. Information Visualization: Perception for Design. San Francisco, CA: Morgan Kaufmann Publishers Inc; 2004.
Kosslyn, SM. Graph Design for the Eye and Mind. Oxford: Oxford University Press; 2006.
Assunção, MD, Calheiros, RN, Bianchi, S, Netto, MAS, Buyya, R. Big Data computing and clouds: trends and future directions. J Parallel Distrib Comput 2015, 79‐80:3–15.
Wong, PC, Shen, HW, Johnson, CR, Chen, C, Ross, RB. The top 10 challenges in extreme‐scale visual analytics. IEEE Comput Graph Appl 2012, 32:63–67.
Yang, C, Sun, M, Liu, K, Huang, Q, Li, Z, Gui, Z, Jiang, YF, Xia, JZ, Yu, MZ, Xu, C, et al. Contemporary computing technologies for processing big spatiotemporal data. In: Space‐Time Integration in Geography and GIScience. Netherlands: Springer; 2015, 327–351.
Goldstone, RL, Pestilli, F, Börner, K. Self‐portraits of the brain: cognitive science, data visualization, and communicating brain structure and function. Trends Cogn Sci 2015, 19:462–474.
Bond, RR, Finlay, DD, Nugent, CD, Moore, G. A Web‐based tool for processing and visualizing body surface potential maps. J Electrocardiol 2010, 43:560–565.
Arsiwalla, XD, Zucca, R, Betella, A, Martinez, E, Dalmazzo, D, Omedas, P, Deco, G, Verschure, PF. Network dynamics with BrainX(3): a large‐scale simulation of the human brain network with real‐time interaction. Front Neuroinform 2015, 9:2.
Boubela, RN, Kalcher, K, Huf, W, Huf, W, Našel, C, Moser, E. Big Data approaches for the analysis of large‐scale fMRI data using apache spark and GPU processing: a demonstration on resting‐state fMRI data from the Human Connectome Project. Front Neurosci 2016, 9(article 492):1–8.
Delmerico, J, Byrnes, N, Bruno, AE, Jones, MD, Gallo, SM, Chaudhary, V. Comparing the performance of clusters, Hadoop, and active disks on microarray correlation computations. In: 2009 International Conference on High Performance Computing (HiPC). IEEE; 2009, 378–387.
Bote‐Lorenzo, ML, Dimitriadis, YA, Gómez‐Sánchez, E. Grid characteristics and uses: a grid definition. In: Grid Computing. Berlin/Heidelberg: Springer; 2004, 291–298.
Montagnat, J, Bellet, F, Benoit‐Cattin, H, Breton, V, Brunie, L, Duque, H, Legr`e, Y, Magnin, IE, Maigne, L, Miguet, S, et al. Medical images simulation, storage, and processing on the European datagrid testbed. J Grid Comput 2004, 2:387–400.
Stanoevska‐Slabeva, K, Wozniak, T, Ristol, S. Grid and Cloud Computing: A Business Perspective on Technology and Applications. Heidelberg: Springer Publishing Company, Incorporated; 2009.
Mell, P, Grance, T. The NIST definition of cloud computing. Commun ACM 2011, 53:50.
Dillon, T, Wu, C, Chang, E. Cloud computing: issues and challenges. In: IEEE International Conference on Advanced Information Networking and Applications, 2010, 27–33.
Branch, RAC, Tjeerdsma, H, Wilson, C, Hurley, R, McConnell, S. Cloud computing and Big Data: a review of current service models and hardware perspectives. J Softw Eng Appl 2014, 07:686–693.
Singh, D, Reddy, CK. A survey on platforms for big data analytics. J Big Data 2015, 2:1–20.
Zaharia, M, Chowdhury, M, Das, T, Dave, A. Fast and interactive analytics over Hadoop data with Spark. USENIX; login 2012, 37:45–51.
Wu, C, Buyya, R, Ramamohanarao, K. Big Data analytics = machine learning + cloud computing. arXiv:1601.03115v1 [cs.DC], 2016.
Ludäscher, B, Weske, M, Mcphillips, T, Bowers, S. Scientific workflows: business as usual? In: Intl Conf on Business Process Management, Lncs. Berlin Heidelberg: Springer‐Verlag; 2009, 31–47.
Gil, Y, Deelman, E, Ellisman, M, Fahringer, T, Fox, G, Gannon, D, Goble, C, Livny, M, Moreau, L, Myers, J. Examining the challenges of scientific workflows. Computer 2007, 40:24–32.
Freire, J, Silva, CT, Callahan, SP, Santos, E, Scheidegger, CE, Huy, TV. Managing Rapidly‐Evolving Scientific Workflows. Provenance and Annotation of Data. Berlin/Heidelberg: Springer; 2006, 10–18.
Barker, A, Van Hemert, J. Scientific workflow: a survey and research directions. In: Parallel Processing and Applied Mathematics. Berlin/Heidelberg: Springer; 2007, 746–753.
Lin, C, Lu, S, Lai, Z, Chebotko, A, Fei, XB, Hua, J, Fotouhi, F. Service‐oriented architecture for VIEW: a visual scientific workflow management system. In: International Conference on Services Computing, 2008. SCC’08. IEEE. Los Alamitos, CA: IEEE Computer Society; 2008, 335–342.
Li, X, Song, J, Huang, B. A scientific workflow management system architecture and its scheduling based on cloud service platform for manufacturing big data analytics. Int J Adv Manuf Technol 2016, 84(1):119–131.
Liu, J, Pacitti, E, Valduriez, P, Mattoso, M. A survey of data‐intensive scientific workflow management. J Grid Comput 2015, 13:457–493.
Sharma, MM, Bala, A. Survey paper on workflow scheduling algorithms used in cloud computing. Int J Inf Comput Technol 2014, 4:997–1002.
Liu, L, Zhang, M, Lin, Y, Qin, L. A survey on workflow management and scheduling in cloud computing. Cluster, Cloud and Grid Computing (CCGrid). In: 14th IEEE/ACM International Symposium on, 2014, 837–846.
Deelman, E, Chervenak, A. Data management challenges of data‐intensive scientific workflows. 8th IEEE International Symposium on Cluster Computing and the Grid, 2008, 687–692.
Moody, GB, Mark, RG, Goldberger, AL. PhysioNet: physiologic signals, time series and related open source software for basic, clinical, and applied research. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. Piscataway, New Jersey: Engineering in Medicine and Biology Society; 2011, 8327–8330.
Moody, GB. Lightwave: waveform and annotation viewing and editing in a web browser. In: Computing in Cardiology Conference (CinC), 2013. Computing in Cardiology(on‐line), http://www.cinc.org/ 2013, 17–20.
https://www.incf.org/resources/software
Garcia, S, Guarino, D, Jaillet, F, Jennings, T, Pröpper, R, Rautenberg, PL, Rodgers, CC, Sobolev, A, Wachtler, T, Yger, P, et al. Neo: an object model for handling electrophysiology data in multiple formats. Front Neuroinform 2014, 8:1–10.
Grewe, J, Wachtler, T, Benda, J. A bottom‐up approach to data annotation in neurophysiology. Front Neuroinform 2011, 5(article16):1–18.
Sobolev, A, Stoewer, A, Leonhardt, A, Rautenberg, PL, Kellner, CJ, Garbers, C, Wachtler, T. Integrated platform and API for electrophysiological data. Front Neuroinform 2014, 8:1–9.
Ježek, P, Moucek, R. EEG/ERP portal‐semantic web extension: generating ontology from object oriented model. In: Second Wri Global Congress on, 2011, 392–395.
Ježek, P. Database of EEG/ERP experiments. PhD thesis, University of West Bohemia in Pilsen, 2010, 62.
Bruha, P, Moucek, R. Portal for research in electrophysiology – data integration with neuroscience information framework. In: 2012 5th International Conference on Biomedical Engineering and Informatics (BMEI). Piscataway, New Jersey: Engineering in Medicine and Biology Society; 2012, 1099–1103.
Badilini, F. The ISHNE Holter standard output file format. Ann Noninvasive Electrocardiol 2006, 3:263–266.
Couderc, JP. The telemetric and Holter ECG warehouse initiative (THEW): a data repository for the design, implementation and validation of ECG‐related technologies. In: International Conference of the IEEE Engineering in Medicine %26 Biology Society, 2010, 6252–6255.
Sarapa, N, Mortara, JL, Brown, BD, Isola, L, Badilini, F. Quantitative performance of E‐Scribe warehouse in detecting quality issues with digital annotated ECG data from healthy subjects. J Clin Pharmacol 2008, 48:538–546.
Park, MY, Yoon, D, Choi, NK, Lee, J, Lee, K, Lim, HS, Park, BJ, Kim, JH, Park, RW. Construction of an open‐access QT database for detecting the proarrhythmia potential of marketed drugs: ECG‐ViEW. Clin Pharmacol Ther 2012, 92:393–396.
Bond, RR, Finlay, DD, Nugent, CD, Moore, G. XML‐BSPM: an XML format for storing Body Surface Potential Map recordings. BMC Med Inform Decis Mak 2010, 10:1–27.
Chronaki, CE, Chiarugi, F, Fischer, R. OpenECG: promoting interoperability through the consistent implementation of the SCP‐ECG standard in electrocardiography. In: Medinfo 2007: Proceedings of the 12th World Congress on Health (Medical) Informatics; Building Sustainable Health Systems. IOS Press; 2007.
Álvarez‐González, M, Vila, XA, Lado, MJ, Mendez, AJ, Rodríguez‐Liñares, L. Web site on heart rate variability: HRV‐site. Comput Cardiol 2010, 2010:609–612.
Barquero‐Pérez, O, Quintanilla, T, Garia‐Munoz, J, Soguero‐Ruiz, C. eLab: a web‐based platform to perform HRV and HRT analysis and store cardiac signals. In: Computing in Cardiology Conference (CinC), 2013, 21–24.
Lourenço, A, da Silva, HP, Carreiras, C, Alves, AP, Fred, ALN. A web‐based platform for biosignal visualization and annotation. Multimed Tools Appl 2014, 70:433–460.
Shen, CP, Zhou, W, Lin, FS, Sung, HY, Lam, YY, Chen, W, Lin, JW, Pan, MK, Chiu, MJ, Lai, F. Epilepsy analytic system with cloud computing. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE Computer Society, 2013, 1644–1647.
Han, CH, Youn, CH, Jung, W. Web‐based system for advanced heart disease identification using grid computing technology. In: 21st IEEE International Symposium on Computer‐Based Medical Systems, 2008. CBMS`08. Los Alamitos, CA: IEEE Computer Society; 2008, 343–348.
Gonçalves, B, Zamborlini, V, Guizzardi, G. An ontology‐based application in heart electrophysiology: representation, reasoning and visualization on the web. In: Proceedings of the 2009 ACM symposium on Applied Computing, 2009, 816–820.
Jayapandian, CP, Chen, CH, Dabir, A, Lhatoo, S, Zhang, GQ, Sahoo, SS. Domain Ontology as Conceptual Model for Big Data Management: Application in Biomedical Informatics. In: Yu E, Dobbie G, Jarke M, Purao S, eds. Conceptual Modeling. ER 2014. Lecture Notes in Computer Science, vol 8824. Switzerland: Springer International Publishing; 2014, 144–157.
Jayapandian, CP, Chen, CH, Bozorgi, A, Lhatoo, SD, Zhang, GQ, Sahoo, SS. Cloudwave: distributed processing of ‘big data’ from electrophysiological recordings for epilepsy clinical research using hadoop. In: AMIA Annual Symposium Proceedings, 2013, 691–700.
Jayapandian, CP. Cloudwave: a cloud computing framework for multimodal electrophysiological big data. OhioLINK Electronic Theses and Dissertations Center, Case Western Reserve University, 2014.
Quinn, TA, Granite, S, Allessie, MA, Antzelevitch, C, Bollensdorff, C, Bub, G, Burton, RA, Cerbai, E, Chen, PS, Delmar, M. Minimum information about a cardiac electrophysiology experiment (MICEE): standardised reporting for model reproducibility‚ interoperability‚ and data sharing. Prog Biophys Mol Biol 2011, 107:4–10.
Healy, PD, O`Reilly, RD, Boylan, GB, Morrison, JP. Interactive annotations to support collaborative analysis of streaming physiological data. In: 2011 24th International Symposium on Computer‐Based Medical Systems (CBMS), 2011, 1–5.
Zhu, T, Behar, J, Papastylianou, T, Clifford, GD. CrowdLabel: a crowdsourcing platform for electrophysiology. In: Computing in Cardiology Conference (CinC), 2014, 789–792.
Ghemawat, S, Gobioff, H, Leung, ST. The Google file system. ACM SIGOPS operating systems review. ACM 2003, 37:29–43.
Halford, JJ, Pressly, WB, Benbadis, SR, Tatum, WO, Turner, RP, Arain, A, Pritchard, PB, Edwards, JC, Dean, BC. Web‐based collection of expert opinion on routine scalp EEG: software development and interrater reliability. J Clin Neurophysiol 2011, 28:178–184.
Dutta, H, Kamil, A, Pooleery, M, Sethumadhavan, S, Demme, J. Distributed storage of large‐scale multidimensional electroencephalogram data using hadoop and hbase. In: Grid and Cloud Database Management. Berlin/Heidelberg: Springer; 2011, 331–347.
Nguyen, AV, Wynden, R, Sun, Y. HBase, MapReduce, and integrated data visualization for processing clinical signal data. In: AAAI Spring Symposium: Computational Physiology, 2011, 40–44.
Fan, X, He, C, Cai, Y, Li, Y. HCloud: a novel application‐oriented cloud platform for preventive healthcare. In: 2012 I.E. 4th International Conference on Cloud Computing Technology and Science (CloudCom). IEEE Computer Society, Los Alamitos, California, USA; 2012, 705–710.
Berrada, G, van Keulen, M, Habib, MB. Hadoop for EEG Storage and Processing: A Feasibility Study. Brain Informatics and Health. Switzerland: Springer International Publishing; 2014, 218–230.
Hsieh, J, Hsu, MW. A cloud computing based 12‐lead ECG telemedicine service. BMC Med Inform Decis Mak 2012, 12:77.
O`Reilly, RD, Power, D, Healy, PD, Morrison, JP, Boylan, GB. Scrutinise, IT. A search‐based approach to EEG seizure detection. eTELEMED 2013. In: The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, 2013, 310–313.
Freeman, J, Vladimirov, N, Kawashima, T, Mu, Y, Sofroniew, NJ, Bennett, DV, Rosen, J, Yang, CT, Looger, LL, Ahrens, MB. Mapping brain activity at scale with cluster computing. Nat Methods 2014, 11:941–950.