Abe,, N., Zadrozny,, B., & Langford,, J. (2006). Outlier detection by active learning. In Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 504–509). Philadelphia, PA.
Abraham,, B., & Box,, G. E. P. (1979). Bayesian analysis of some outlier problems in time series. Biometrika, 66(2), 229–236.
Aggarwal,, C. C. (2012). Outlier ensembles. ACM SIGKDD Explorations, 14(2), 49–58.
Agostinelli,, C. (2007). Robust estimation for circular data. Computational Statistics %26 Data Analysis, 51(12), 5847–5866.
Agyemang,, M., Barker,, K., & Alhajj,, R. (2006). A comprehensive survey of numeric and symbolic outlier mining techniques. Intelligent Data Analysis, 10, 521–538.
Akoglu,, L., Tong,, H., & Koutra,, D. (2015). Graph‐based anomaly detection and description: A survey. Data Mining and Knowledge Discovery, 29(3), 626–688.
Akoglu,, L., Tong,, H., Vreeken,, J., & Faloutsos,, C. (2012). Fast and reliable anomaly detection in categorical data. In Proceedings of the 21st ACM Conference on Information and Knowledge Management (CIKM) (pp. 415–424). Maui, HI.
Alquallaf,, F., Van Aelst,, S., Yohai,, V. J., & Zamar,, R. H. (2009). Propagation of outliers in multivariate data. The Annals of Statistics, 37(1), 311–331.
Angiulli,, F., & Fassetti,, F. (2009). DOLPHIN: An efficient algorithm for mining distance‐based outliers in very large datasets. ACM Transactions on Knowledge Discovery from Data, 3(1), 1–57.
Angiulli,, F., & Fassetti,, F. (2010). Distance‐based outlier queries in data streams: The novel task and algorithms. Data Mining and Knowledge Discovery, 20(2), 290–324.
Angiulli,, F., Fassetti,, F., Manco,, G., & Palopoli,, L. (2017). Outlying property detection with numerical attributes. Data Mining and Knowledge Discovery, 31(1), 134–163.
Angiulli,, F., Fassetti,, F., & Palopoli,, L. (2009). Detecting outlying properties of exceptional objects. ACM Transactions on Database Systems, 34(1), 1–62.
Angiulli,, F., Fassetti,, F., & Palopoli,, L. (2013). Discovering characterizations of the behavior of anomalous subpopulations. IEEE Transactions on Knowledge and Data Engineering, 25(6), 1280–1292.
Angiulli,, F. & Pizzuti,, C. (2002). Fast outlier detection in high dimensional spaces. In Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD) (pp. 15–26). Helsinki, Finland.
Angiulli,, F., & Pizzuti,, C. (2005). Outlier mining in large high‐dimensional data sets. IEEE Transactions on Knowledge and Data Engineering, 17(2), 203–215.
Anscombe,, F. J., & Guttman,, T. (1960). Rejection of outliers. Technometrics, 2(2), 123–147.
Arning,, A., Agrawal,, R., & Raghavan,, P. (1996). A linear method for deviation detection in large databases. In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 164–169). Portland, OR.
Assent,, I., Kranen,, P., Baldauf,, C., & Seidl,, T. (2012). AnyOut: Anytime outlier detection on streaming data. In Proceedings of the 17th International Conference on Database Systems for Advanced Applications (DASFAA) (pp. 228–242). Busan, South Korea.
Barnett,, V. (1978). The study of outliers: Purpose and model. Applied Statistics, 27(3), 242–250.
Barnett,, V., & Lewis,, T. (1994). Outliers in statistical data (3rd ed.). Chichester: John Wiley%26Sons.
Barua,, S., & Sander,, J. (2014). Mining statistically significant co‐location and segregation patterns. IEEE Transactions on Knowledge and Data Engineering, 26(5), 1185–1199.
Bay,, S. D. & Schwabacher,, M. (2003). Mining distance‐based outliers in near linear time with randomization and a simple pruning rule. In Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 29–38). Washington, DC.
Becker,, C., & Gather,, U. (1999). The masking breakdown point of multivariate outlier identification rules. Journal of the American Statistical Association, 94, 947–955.
Beckman,, R. J., & Cook,, R. D. (1983). Outlier……….s. Technometrics, 25(2), 119–149.
Bernoulli,, D. (1777). Diiudicatio maxime probabilis plurium observationum discrepantium atque verisimillima inductio inde formanda. Acta Academiae Scientiarum Imperialis Petropolitanae, 3–23.
Bernoulli,, D., & Allen,, C. G. (1961). The most probable choice between several discrepant observations and the formation therefrom of the most likely induction. Biometrika, 48(1–2), 3–18.
Bessel,, F. W. (1838). Gradmessung in Ostpreußen und ihre Verbindung mit Preußischen und Russischen Dreiecksketten. Berlin: Königliche Akademie der Wissenschaften.
Bhaduri,, K., Matthews,, B. L., & Giannella,, C. R. (2011). Algorithms for speeding up distance‐based outlier detection. In Proceedings of the 17th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 859–867). San Diego, CA.
Breunig,, M. M., Kriegel,, H. P., Ng,, R. T., & Sander,, J. (2000). LOF: Identifying density‐based local outliers. In Proceedings of the ACM International Conference on Management of Data (SIGMOD) (pp. 93–104). Dallas, TX.
Brown,, G., Wyatt,, J., Harris,, R., & Yao,, X. (2005). Diversity creation methods: A survey and categorisation. Information Fusion, 6, 5–20.
Campbell,, N. A. (1980). Robust procedures in multivariate analysis I: Robust covariance estimation. Journal of the Royal Statistical Society: Series C (Applied Statistics), 29(3), 231–237.
Campbell,, N. A. (1982). Robust procedures in multivariate analysis II. Robust canonical variate analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(1), 1–8.
Campello,, R. J. G. B., Moulavi,, D., Zimek,, A., & Sander,, J. (2015). Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data, 10(1), 1–51.
Campos,, G. O., Zimek,, A., Sander,, J., Campello,, R. J. G. B., Micenková,, B., Schubert,, E., … Houle,, M. E. (2016). On the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study. Data Mining and Knowledge Discovery, 30, 891–927.
Cerioli,, A. (2010). Multivariate outlier detection with high‐breakdown estimators. Journal of the American Statistical Association, 105(489), 147–156.
Chakrabarti,, S., Sarawagi,, S, & Dom,, B. (1998). Mining surprising patterns using temporal description length. In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB) (pp. 606–617). New York City, NY.
Chandola,, V., Banerjee,, A., & Kumar,, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1–58.
Chandola,, V., Banerjee,, A., & Kumar,, V. (2012). Anomaly detection for discrete sequences: A survey. IEEE Transactions on Knowledge and Data Engineering, 24(5), 823–839.
Chawla,, S. & Gionis,, A. (2013). k‐means‐‐: A unified approach to clustering and outlier detection. In Proceedings of the 13th SIAM International Conference on Data Mining (SDM) (pp. 189–197). Austin, TX.
Chawla,, S., & Sun,, P. (2006). SLOM: A new measure for local spatial outliers. Knowledge and Information Systems (KAIS), 9(4), 412–429.
Chen,, M., Gao,, C., & Ren,, Z. (2015). Robust covariance matrix estimation via matrix depth. arXiv:150600691.
Collett,, D., & Lewis,, T. (1976). The subjective nature of outlier rejection procedures. Journal of the Royal Statistical Society: Series C (Applied Statistics), 25(3), 228–237.
Craswell,, N. (2009a). Precision at n. In L. Liu, & M. T. Özsu, (Eds.), Encyclopedia of database systems (pp. 2127–2128). Boston, MA: Springer.
Craswell,, N. (2009b). R‐Precision. In L. Liu, & M. T. Özsu, (Eds.), Encyclopedia of Database Systems (p. 2453). Boston, MA: Springer.
Cressie,, N., & Read,, T. R. C. (1988). Cressie‐read statistic. In S. Kotz, & N. L. Johnson, (Eds.), Encyclopedia of statistical sciences, Supplementary Volume (pp. 37–39). New York: John Wiley %26 Sons.
Dang,, X. H., Assent,, I., Ng,, R. T., Zimek,, A., & Schubert,, E. (2014). Discriminative features for identifying and interpreting outliers. In Proceedings of the 30th International Conference on Data Engineering (ICDE) (pp. 88–99). Chicago, IL.
Dang,, X. H., Micenková,, B., Assent,, I., & Ng,, R. (2013). Local outlier detection with interpretation. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD) (pp. 304–320). Prague, Czech Republic.
Das,, K. & Schneider,, J. G. (2007). Detecting anomalous records in categorical datasets. In Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 220–229). San Jose, CA.
Dasgupta,, D & Majumdar,, N. S. (2002). Anomaly detection in multidimensional data using negative selection algorithm. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC) (pp. 1039–1044). Honolulu, HI.
Dasgupta,, D. & Nino,, F. (2000). A comparison of negative and positive selection algorithms in novel pattern detection. In Proceedings of the 2000 I.E. International Conference on Systems, Man, and Cybernetics (ICSMC) (pp. 125–130). Nashville, TN.
de Vries,, T., Chawla,, S., & Houle,, M. E. (2012). Density‐preserving projections for large‐scale local anomaly detection. Knowledge and Information Systems, 32(1), 25–52.
Delannay,, N., Archambeau,, C., & Verleysen,, M. (2008). Improving the robustness to outliers of mixtures of probabilistic PCAs. In Proceedings of the 12th Pacific‐Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (pp. 527–535). Osaka, Japan.
Dempster,, A. P., & Gasko‐Green,, M. (1981). New tools for residual analysis. The Annals of Statistics, 9(5), 945–959.
Dietterich,, T.G. (2000). Ensemble methods in machine learning. In First International Workshop on Multiple Classifier Systems (MCS) (pp. 1–15). Cagliari, Italy.
Donoho,, D. L. (1982). Breakdown properties of multivariate location estimators. (PhD thesis). Harvard University.
Duan,, L., Tang,, G., Pei,, J., Bailey,, J., Campbell,, A., & Tang,, C. (2015). Mining outlying aspects on numeric data. Data Mining and Knowledge Discovery, 29(5), 1116–1151.
Emmott,, A. F., Das,, S., Dietterich,, T., Fern,, A., & Wong,, W. K. (2013). Systematic construction of anomaly detection benchmarks from real data. In Workshop on Outlier Detection and Description (ODD), held in conjunction with the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 16–21). Chicago, IL.
Eskin,, E. (2000). Anomaly detection over noisy data using learned probability distributions. In Proceedings of the 17th international conference on machine learning (ICML) (pp. 255–262). Stanford, CA: Stanford University.
Ester,, M., Kriegel,, H. P., Sander,, J., & Xu,, X.. (1996). A density‐based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 226–231). Portland, OR.
Faloutsos,, C. (2010). KDD innovation award talk. Retrieved from http://www.cs.cmu.edu/∼christos/TALKS/10-KDD-award/Faloutsos10IA.pdf
Faloutsos,, C., & Megalooikonomou,, V. (2007). On data mining, compression, and Kolmogorov complexity. Data Mining and Knowledge Discovery, 15(1), 3–20.
Fan,, H., Zaïane,, O. R., Foss,, A., & Wu,, J. (2006). A nonparametric outlier detection for efficiently discovering top‐N outliers from engineering data. In Proceedings of the 10th Pacific‐Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (pp. 557–566). Singapore.
Filzmoser,, P., Garrett,, R. G., & Reimann,, C. (2005). Multivariate outlier detection in exploration geochemistry. Computer %26 Geosciences, 31, 579–587.
Filzmoser,, P & Gschwandtner,, M. (2017). mvoutlier: Multivariate outlier detection based on robust methods. R package version 2.0.8. Retrieved from https://CRAN.R-project.org/package=mvoutlier
Filzmoser,, P., Maronna,, R., & Werner,, M. (2008). Outlier identification in high dimensions. Computational Statistics and Data Analysis, 52(3), 1694–1711.
Filzmoser,, P., Ruiz‐Gazen,, A., & Thomas‐Agnan,, C. (2014). Identification of local multivariate outliers. Statistical Papers, 55(1), 29–47.
Fox,, A. J. (1972). Outliers in time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 34(3), 350–363.
Franke,, C., Karnstedt,, M., Klan,, D., Gertz,, M., Sattler,, K. U., & Chervakova,, E. (2009). In‐network detection of anomaly regions in sensor networks with obstacles. Computer Science – Research and Development, 24(3), 153–170.
Friedman,, J., Hastie,, T., & Tibshirani,, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.
Gao,, J., Liang,, F., Fan,, W., Wang,, C., Sun,, Y., & Han,, J. (2010). On community outliers and their efficient detection in information networks. In Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 813–822). Washington, DC.
Gao,, J. & Tan,, P. N. (2006). Converting output scores from outlier detection algorithms into probability estimates. In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM) (pp. 212–221). Hong Kong, China.
Ghosh,, J., & Acharya,, A. (2011). Cluster ensembles. WIREs Data Mining and Knowledge Discovery, 1(4), 305–315.
Ghoting,, A., Parthasarathy,, S., & Otey,, M. E. (2008). Fast mining of distance‐based outliers in high‐dimensional datasets. Data Mining and Knowledge Discovery, 16(3), 349–364.
Gionis,, A., Mannila,, H., & Tsaparas,, P. (2007). Clustering aggregation. ACM Transactions on Knowledge Discovery from Data, 1(1), 1–30.
Gnanadesikan,, R., & Kettenring,, J. R. (1972). Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28(1), 81–124.
Hadi,, A. S., Rahmatullah Imon,, A. H. M., & Werner,, M. (2009). Detection of outliers. WIREs Computational Statistics, 1(1), 57–70.
Han,, J., Kamber,, M., & Pei,, J. (2011). Data mining: Concepts and techniques (3rd ed.). Waltham, MA: Morgan Kaufmann.
Hanley,, J. A., & McNeil,, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29–36.
Hardin,, J., & Rocke,, D. M. (2004). Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Computational Statistics and Data Analysis, 44(4), 625–638.
Hardin,, J., & Rocke,, D. M. (2005). The distribution of robust distances. Journal of Computational and Graphical Statistics, 14, 910–927.
Hautamäki,, V., Kärkkäinen,, I., & Fränti,, P. (2004). Outlier detection using k‐nearest neighbor graph. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR) (pp. 430–433). Cambridge, England.
Hawkins,, D. (1980). Identification of outliers. London: Chapman and Hall.
Hayes,, M. A., & Capretz,, M. A. M. (2015). Contextual anomaly detection framework for big sensor data. Journal of Big Data, 2, 2.
He,, Z., Deng,, S., Xu,, X., & Huang,, J. Z. (2006). A fast greedy algorithm for outlier mining. In Proceedings of the 10th Pacific‐Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (pp. 567–576). Singapore.
Hido,, S., Tsuboi,, Y., Kashima,, H., Sugiyama,, M., & Kanamori,, T. (2008). Inlier‐based outlier detection via direct density ratio estimation. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM) (pp. 223–232). Pisa, Italy.
Hido,, S., Tsuboi,, Y., Kashima,, H., Sugiyama,, M., & Kanamori,, T. (2011). Statistical outlier detection using direct density ratio estimation. Knowledge and Information Systems, 26(2), 309–336.
Hodge,, V. J., & Austin,, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22, 85–126.
Huber,, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1), 73–101.
Iam‐On,, N., & Boongoen,, T. (2015). Comparative study of matrix refinement approaches for ensemble clustering. Machine Learning, 98(1–2), 269–300.
Jagadish,, H. V., Koudas,, N., & Muthukrishnan,, S. (1999). Mining deviants in a time series database. In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB) (pp. 102–113). Edinburgh, Scotland.
Janeja,, V. P., Adam,, N. R., Atluri,, V., & Vaidya,, J. (2010). Spatial neighborhood based anomaly detection in sensor datasets. Data Mining and Knowledge Discovery, 20(2), 221–258.
Janssens,, J., Huszár,, F., Postma,, E., & van den Herik,, J. (2012). Stochastic outlier selection. Tilburg: Tilburg centre for Creative Computing.
Jiang,, B. & Pei,, J. (2011). Outlier detection on uncertain data: Objects, instances, and inferences. In Proceedings of the 27th International Conference on Data Engineering (ICDE) (pp. 422–433). Hannover, Germany.
Jin,, W., Tung,, A. K., & Han,, J. (2001). Mining top‐n local outliers in large databases. In Proceedings of the 7th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 293–298). San Francisco, CA.
Jin,, W., Tung,, A. K. H., Han,, J., & Wang,, W. (2006). Ranking outliers using symmetric neighborhood relationship. In Proceedings of the 10th Pacific‐Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (pp. 577–593).
Johnson,, T., Kwok,, I., & Ng,, R. (1998). Fast computation of 2‐dimensional depth contours. In Proceedings of the 4th ACM International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 224–228). New York City, NY.
Keller,, F., Müller,, E., & Böhm,, K. (2012). HiCS: High contrast subspaces for density‐based outlier ranking. In Proceedings of the 28th International Conference on Data Engineering (ICDE) (pp. 1037–1048). Washington, DC.
Kirner,, E., Schubert,, E., & Zimek,, A. (2017). Good and bad neighborhood approximations for outlier detection ensembles. In Proceedings of the 10th International Conference on Similarity Search and Applications (SISAP) (pp. 173–187). Munich, Germany.
Knorr,, E. M. & Ng,, R. T. (1997). A unified notion of outliers: Properties and computation. In Proceedings of the 3rd ACM International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 219–222). Newport Beach, CA.
Knorr,, E. M. & Ng,, R. T. (1998). Algorithms for mining distance‐based outliers in large datasets. In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB) (pp. 392–403). New York City, NY.
Knorr,, E. M. & Ng,, R. T. (1999). Finding intensional knowledge of distance‐based outliers. In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB) (pp. 211–222). Edinburgh, Scotland.
Knorr,, E. M., Ng,, R. T., & Tucanov,, V. (2000). Distance‐based outliers: Algorithms and applications. The VLDB Journal, 8(3–4), 237–253.
Kollios,, G., Gunopulos,, D., Koudas,, N., & Berchthold,, S. (2003). Efficient biased sampling for approximate clustering and outlier detection in large datasets. IEEE Transactions on Knowledge and Data Engineering, 15(5), 1170–1187.
Kontaki,, M., Gounaris,, A., Papadopoulos,, A. N., Tsichlas,, K., & Manolopoulos,, Y. (2016). Efficient and flexible algorithms for monitoring distance‐based outliers over data streams. Information Systems, 55, 37–53.
Kou,, Y., Lu,, C. T., & Chen,, D. (2006). Spatial weighted outlier detection. In Proceedings of the 6th SIAM International Conference on Data Mining (SDM) (pp. 614–618). Bethesda, MD.
Kriegel,, H. P., Kröger,, P., Schubert,, E., & Zimek,, A. (2008). A general framework for increasing the robustness of PCA‐based correlation clustering algorithms. In Proceedings of the 20th International Conference on Scientific and Statistical Database Management (SSDBM) (pp. 418–435). Hong Kong, China.
Kriegel,, H. P., Kröger,, P., Schubert,, E., & Zimek,, A. (2009a). LoOP: Local outlier probabilities. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM) (pp. 1649–1652). Hong Kong, China.
Kriegel,, H. P., Kröger,, P., Schubert,, E., & Zimek,, A. (2009b). Outlier detection in axis‐parallel subspaces of high dimensional data. In Proceedings of the 13th Pacific‐Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (pp. 831–838). Bangkok, Thailand.
Kriegel,, H. P., Kröger,, P., Schubert,, E., & Zimek,, A. (2011). Interpreting and unifying outlier scores. In Proceedings of the 11th SIAM International Conference on Data Mining (SDM) (pp. 13–24). Mesa, AZ.
Kriegel,, H. P., Kröger,, P., Schubert,, E., & Zimek,, A. (2012). Outlier detection in arbitrarily oriented subspaces. In Proceedings of the 12th IEEE International Conference on Data Mining (ICDM) (pp. 379–388). Brussels, Belgium.
Kriegel,, H. P., Schubert,, E., & Zimek,, A. (2017). The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowledge and Information Systems, 52(2), 341–378.
Kriegel,, H. P., Schubert,, M., & Zimek,, A. (2008). Angle‐based outlier detection in high‐dimensional data. In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 444–452). Las Vegas, NV.
Kröger,, P., & Renz,, M. (2009). Multi‐step query processing. In L. Liu, & M. T. Özsu, (Eds.), Encyclopedia of database systems (pp. 1858–1862). Boston, MA: Springer.
Kruskal,, W. H. (1960). Some remarks on wild observations. Technometrics, 2(1), 1–3.
Kuncheva,, L. I., & Whitaker,, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51, 181–207.
Latecki,, L. J, Lazarevic,, A., & Pokrajac,, D. (2007). Outlier detection with kernel density functions. In Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM) (pp. 61–75). Leipzig, Germany.
Lazarevic,, A. & Kumar,, V. (2005). Feature bagging for outlier detection. In Proceedings of the 11th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 157–166). Chicago, IL.
Leach,, M. J. V., Sparks,, E. P., & Robertson,, N. M. (2014). Contextual anomaly detection in crowded surveillance scenes. Pattern Recognition Letters, 44, 71–79.
Lee,, J. G., Han,, J., & Li,, X. (2008). Trajectory outlier detection: A partition‐and‐detect framework. In Proceedings of the 24th International Conference on Data Engineering (ICDE) (pp. 140–149). Cancun, Mexico.
Li,, C., & Wong,, W. H. (2001). Model‐based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the National Academy of Sciences of the United States of America, 98(1), 31–36.
Liang,, J. & Parthasarathy,, S. (2016). Robust contextual outlier detection: Where context meets sparsity. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM) (pp. 2167–2172). Indianapolis, IN.
Liu,, B., Xiao,, Y., Cao,, L., Hao,, Z., & Deng,, F. (2013). SVDD‐based outlier detection on uncertain data. Knowledge and Information Systems, 34(3), 597–618.
Liu,, F. T., Ting,, K. M., & Zhou,, Z. H. (2012). Isolation‐based anomaly detection. ACM Transactions on Knowledge Discovery from Data, 6(1), 1–39.
Liu,, X., Lu,, C. T., & Chen,, F. (2010). Spatial outlier detection: Random walk based approaches. In Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS) (pp. 370–379). San Jose, CA.
Locantore,, N., Marron,, J. S., Simpson,, D. G., Tripoli,, N., Zhang,, J. T., & Cohen,, K. L. (1999). Robust principal components for functional data. TEST, 8, 1–73.
Lu,, C. T., Chen,, D., & Kou,, Y. (2003). Algorithms for spatial outlier detection. In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM) (pp. 597–600). Melbourne, FL.
MacQueen,, J. (1967). Some methods for classification and analysis of multivariate observations. In 5th Berkeley Symposium on Mathematics, Statistics, and Probabilistics: Vol. 1 (pp. 281–297). Berkeley, CA.
Maechler,, M., Rousseeuw,, P., Croux,, C., Todorov,, V., Ruckstuhl,, A., Salibian‐Barrera,, M., … Anna di Palma, M. (2016). Robustbase: basic robust statistics. R package version 0.92‐7. Retrieved from http://robustbase.r-forge.r-project.org/.
Mardia,, K. V., & Jupp,, P. E. (2000). Directional statistics. New York, NY: John Wiley %26 Sons.
Markou,, M., & Singh,, S. (2003a). Novelty detection: A review — Part 1: Statistical approaches. Signal Processing, 83, 2481–2497.
Markou,, M., & Singh,, S. (2003b). Novelty detection: A review — Part 2: Neural network based approaches. Signal Processing, 83, 2499–2521.
Maronna,, R., Martin,, D., & Yohai,, V. (2006). Robust statistics: Theory and methods. Toronto, Canada: John Wiley %26 Sons Canada Ltd.
Maronna,, R., & Zamar,, R. (2002). Robust estimates of location and dispersion for high‐dimensional data sets. Technometrics, 44(4), 307–317.
Maronna,, R. A. (1976). Robust M‐estimators of multivariate location and scatter. The Annals of Statistics, 4(1), 51–67.
Marques,, H. O., Campello,, R. J. G. B., Zimek,, A., & Sander,, J. (2015). On the internal evaluation of unsupervised outlier detection. In Proceedings of the 27th International Conference on Scientific and Statistical Database Management (SSDBM) (pp. 7:1–12). San Diego, CA.
McInnes,, L., Healy,, J., & Astels,, S. (2017). hdbscan: Hierarchical density based clustering. The Journal of Open Source Software, 2(11), 205. https://doi.org/10.21105/joss.00205
Micenková,, B., Ng,, R. T., Dang,, X. H., & Assent,, I. (2013). Explaining outliers by subspace separability. In Proceedings of the 13th IEEE International Conference on Data Mining (ICDM) (pp. 518–527). Dallas, TX.
Müller,, E., Assent,, I., Iglesias,, P., Mülle,, Y., & Böhm,, K.. (2012). Outlier ranking via subspace analysis in multiple views of the data. In Proceedings of the 12th IEEE International Conference on Data Mining (ICDM) (pp. 529–538). Brussels, Belgium.
Müller,, E., Assent,, I., Steinhausen,, U., & Seidl,, T. (2008). OutRank: Ranking outliers in high dimensional data. In Proceedings of the 24th International Conference on Data Engineering (ICDE) Workshop on Ranking in Databases (DBRank) (pp. 600–603). Cancun, Mexico.
Müller,, E., Schiffer,, M., & Seidl,, T. (2010). Adaptive outlierness for subspace outlier ranking. In Proceedings of the 19th ACM Conference on Information and Knowledge Management (CIKM) (pp. 1629–1632). Toronto, Canada.
Müller,, E., Schiffer,, M., & Seidl,, T. (2011). Statistical selection of relevant subspace projections for outlier ranking. In Proceedings of the 27th International Conference on Data Engineering (ICDE) (pp. 434–445). Hannover, Germany.
Nguyen,, H. V., Ang,, H. H., & Gopalkrishnan,, V. (2010). Mining outliers with ensemble of heterogeneous detectors on random subspaces. In Proceedings of the 15th International Conference on Database Systems for Advanced Applications (DASFAA) (pp. 368–383). Tsukuba, Japan.
Nguyen,, H. V. & Gopalkrishnan,, V. (2009). Efficient pruning schemes for distance‐based outlier detection. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD) (pp. 160–175). Bled, Slovenia.
Nguyen,, H. V., Gopalkrishnan,, V., & Assent,, I. (2011). An unbiased distance‐based outlier detection approach for high‐dimensional data. In Proceedings of the 16th International Conference on Database Systems for Advanced Applications (DASFAA) (pp. 138–152). Hong Kong, China.
Nguyen,, N. & Caruana,, R. (2007). Consensus clusterings. In Proceedings of the 7th IEEE International Conference on Data Mining (ICDM) (pp. 607–612). Omaha, NE.
Öllerer,, V., & Croux,, C. (2015). Robust high‐dimensional precision matrix estimation. In K. Nordhausen, & S. Taskinen, (Eds.), Modern nonparametric (pp. 325–350). Robust and multivariate methods, Heidelberg, Germany: Springer.
Orair,, G. H., Teixeira,, C., Wang,, Y., Meira,, W., Jr., & Parthasarathy,, S. (2010). Distance‐based outlier detection: Consolidation and renewed bearing. Proceedings of the VLDB Endowment, 3(2), 1469–1480.
Otey,, M. E., Ghoting,, A., & Parthasarathy,, S. (2006). Fast distributed outlier detection in mixed‐attribute data sets. Data Mining and Knowledge Discovery, 12(2–3), 203–228.
Papadimitriou,, S., Kitagawa,, H., Gibbons,, P. B., & Faloutsos,, C. (2003). LOCI: Fast outlier detection using the local correlation integral. In Proceedings of the 19th International Conference on Data Engineering (ICDE) (pp. 315–326). Bangalore, India.
Patcha,, A., & Park,, J. M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51, 3448–3470.
Paulheim,, H., & Meusel,, R. (2015). A decomposition of the outlier detection problem into a set of supervised learning problems. Machine Learning, 100(2–3), 509–531.
Pearson,, E. S., & Chandra Sekar,, C. (1936). The efficiency of statistical tools and a criterion for the rejection of outlying observations. Biometrika, 28(3/4), 308–320.
Pedregosa,, F., Varoquaux,, G., Gramfort,, A., Michel,, V., Thirion,, B., Grisel,, O., et al. (2011). Scikit‐learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
Pei,, Y., Zaïane,, O., & Gao,, Y. (2006). An efficient reference‐based approach to outlier detection in large datasets. In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM) (pp. 478–487). Hong Kong, China.
Peirce,, B. (1852). Criterion for the rejection of doubtful observations. The Astronomical Journal, 2(45), 161–163.
Peña,, D., & Prieto,, F. J. (2001). Cluster identification using projections. Journal of the American Statistical Association, 96(456), 1433–1445.
Perozzi,, B., Akoglu,, L., Sánchez,, P. I., & Müller,, E. (2014). Focused clustering and outlier detection in large attributed graphs. In Proceedings of the 20th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 1346–1355). New York, NY.
Pham,, N. & Pagh,, R. (2012). A near‐linear time approximation algorithm for angle‐based outlier detection in high‐dimensional data. In Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 877–885). Beijing, China.
Phua,, C., Alahakoon,, D., & Lee,, V. (2004). Minority report in fraud detection: Classification of skewed data. ACM SIGKDD Explorations, 6(1), 50–59.
Pimentel,, M. A. F., Clifton,, D. A., Clifton,, L. A., & Tarassenko,, L. (2014). A review of novelty detection. Signal Processing, 99, 215–249.
Pokrajac,, D., Lazarevic,, A., & Latecki,, L. J. (2007). Incremental local outlier detection for data streams. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (pp. 504–515). Honolulu, HI.
Popper,, K. R. (1934). Logik der Forschung. Zur Erkenntnistheorie der modernen naturwissenschaft. Wien: Julius Springer.
Popper,, K. R. (1959). The logic of scientific discovery. London: Hutchinson %26 Co.
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Radovanović,, M., Nanopoulos,, A., & Ivanović,, M. (2014). Reverse nearest neighbors in unsupervised distance‐based outlier detection. IEEE Transactions on Knowledge and Data Engineering, 27(5), 1369–1382.
Ramaswamy,, S., Rastogi,, R., & Shim,, K. (2000). Efficient algorithms for mining outliers from large data sets. In Proceedings of the ACM International Conference on Management of Data (SIGMOD) (pp. 427–438). Dallas, TX.
Rayana,, S., & Akoglu,, L. (2016). Less is more: Building selective anomaly ensembles. ACM Transactions on Knowledge Discovery from Data, 10(4), 42:1–42:33. https://doi.org/10.1145/2890508
Rokach,, L. (2010). Ensemble‐based classifiers. Artificial Intelligence Review, 33, 1–39.
Rosner,, B. (1975). On the detection of many outliers. Technometrics, 17, 221–227.
Rousseeuw,, P., & Van Driessen,, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212–223.
Rousseeuw,, P. J., & Hubert,, M. (2011). Robust statistics for outlier detection. WIREs Data Mining and Knowledge Discovery, 1(1), 73–79.
Rousseeuw,, P. J., & Leroy,, A. M. (2003). Robust regression and outlier detection. New York, NY: Wiley‐Interscience.
Rousseeuw,, P. J. & Van den Bossche,, W. (2016). Detecting deviating data cells. ArXiv e‐prints.
Rousseeuw,, P. J., & van Zomeren,, B. C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85(411), 633–639.
Ruts,, I., & Rousseeuw,, P. J. (1996). Computing depth contours of bivariate point clouds. Computational Statistics and Data Analysis, 23, 153–168.
Sadik,, M. S., & Gruenwald,, L. (2013). Research issues in outlier detection for data streams. ACM SIGKDD Explorations, 15(1), 33–40.
Sadoddin,, R., Sander,, J., & Rafiei,, D. (2016). Finding surprisingly frequent patterns of variable lengths in sequence data. In Proceedings of the 16th SIAM International Conference on Data Mining (SDM) (pp. 27–35). Miami, FL.
Sánchez,, P. I., Müller,, E., Irmler,, O., & Böhm,, K. (2014). Local context selection for outlier ranking in graphs with multiple numeric node attributes. In Proceedings of the 26th International Conference on Scientific and Statistical Database Management (SSDBM) (pp. 16:1–16:12). Aalborg, Denmark.
Sánchez,, P. I., Müller,, E., Laforet,, F., Keller,, F., & Böhm,, K. (2013). Statistical selection of congruent subspaces for mining attributed graphs. In Proceedings of the 13th IEEE International Conference on Data Mining (ICDM) (pp. 647–656). Dallas, TX.
Sarawagi,, S., Agrawal,, R., & Megiddo,, N. (1998). Discovery‐driven exploration of OLAP data cubes. In Proceedings of the 6th International Conference on Extending Database Technology (EDBT) (pp. 168–182). Valencia, Spain.
Schubert,, E. (2013). Generalized and efficient outlier detection for spatial, temporal, and high‐dimensional data mining. (PhD thesis). Ludwig‐Maximilians‐Universität München, Munich, Germany.
Schubert,, E., Koos,, A., Emrich,, T., Züfle,, A., Schmid,, K. A., & Zimek,, A. (2015). A framework for clustering uncertain data. Proceedings of the VLDB Endowment, 8(12), 1976–1979.
Schubert,, E., Weiler,, M., & Kriegel,, H. P. (2014). SigniTrend: Scalable detection of emerging topics in textual streams by hashed significance thresholds. In Proceedings of the 20th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 871–880). New York, NY.
Schubert,, E., Weiler,, M., & Kriegel,, H. P. (2016). SPOTHOT: Scalable detection of geo‐spatial events in large textual streams. In Proceedings of the 28th International Conference on Scientific and Statistical Database Management (SSDBM) (pp. 8:1–8:12).
Schubert,, E., Wojdanowski,, R., Zimek,, A., & Kriegel,, H. P. (2012). On evaluation of outlier rankings and outlier scores. In Proceedings of the 12th SIAM International Conference on Data Mining (SDM) (pp. 1047–1058). Anaheim, CA.
Schubert,, E., Zimek,, A., & Kriegel,, H. P. (2014a). Generalized outlier detection with flexible kernel density estimates. In Proceedings of the 14th SIAM International Conference on Data Mining (SDM) (pp. 542–550). Philadelphia, PA.
Schubert,, E., Zimek,, A., & Kriegel,, H. P. (2014b). Local outlier detection reconsidered: A generalized view on locality with applications to spatial, video, and network outlier detection. Data Mining and Knowledge Discovery, 28(1), 190–237.
Scott,, D. W. (2008). Multivariate density estimation: Theory, practice, and visualization. Hoboken, NJ: John Wiley %26 Sons.
Seshadri,, M., Machiraju,, S., Sridharan,, A., Bolot,, J., Faloutsos,, C, & Leskovec,, J. (2008). Mobile call graphs: Beyond power‐law and lognormal distributions. In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 596–604). Las Vegas, NV.
Shekhar,, S., Lu,, C. T., & Zhang,, P. (2003). A unified approach to detecting spatial outliers. GeoInformatica, 7(2), 139–166.
Silverman,, B. W. (1986). Density estimation for statistics and data analysis. Boca Raton, FL: Chapman %26 Hall/CRC.
Smets,, K. & Vreeken,, J. (2011). The odd one out: Identifying and characterising anomalies. In Proceedings of the 11th SIAM International Conference on Data Mining (SDM) (pp. 804–815). Mesa, AZ.
Song,, X., Wu,, M., Jermaine,, C. M., & Ranka,, S. (2007). Conditional anomaly detection. IEEE Transactions on Knowledge and Data Engineering, 19(5), 631–645.
Stahel,, W. A. (1981). Breakdown of covariance estimators. E.T.H. Zürich, Switzerland: Fachgruppe für Statistik.
Steinwart,, I., Hush,, D., & Scovel,, C. (2005). A classification framework for anomaly detection. Journal of Machine Learning Research, 6, 211–232.
Strehl,, A., & Ghosh,, J. (2002). Cluster ensembles – A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.
Su,, X., & Tsai,, C. L. (2011). Outlier Detection. WIREs Data Mining and Knowledge Discovery, 1(3), 261–268.
Sugiyama,, M., Borgwardt,, K. M. (2013). Rapid distance‐based outlier detection via sampling. In Proceedings of the 27th Annual Conference on Neural Information Processing Systems (NIPS) (pp. 467–475). Lake Tahoe, NV.
Sun,, P. & Chawla,, S. (2004). On local spatial outliers. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM) (pp. 209–216). Brighton, England.
Swersky,, L., Marques,, H. O., Sander,, J., Campello,, R. J. G. B., & Zimek,, A. (2016). On the evaluation of outlier detection and one‐class classification methods. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 1–10). Montreal, Canada.
Takeuchi,, J., & Yamanishi,, K. (2006). A unifying framework for detecting outliers and change points from time series. IEEE Transactions on Knowledge and Data Engineering, 18(4), 482–492.
Tan,, P. N., Steinbach,, M., & Kumar,, V. (2006). Introduction to data mining. Boston, MA: Addison Wesley.
Tang,, G., Pei,, J., Bailey,, J., & Dong,, G. (2015). Mining multidimensional contextual outliers from categorical relational data. Intelligent Data Analysis, 19(5), 1171–1192.
Tang,, J., Chen,, Z., Fu,, A. W. C., & Cheung,, D. W. (2002). Enhancing effectiveness of outlier detections for low density patterns. In Proceedings of the 6th Pacific‐Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (pp. 535–548). Taipei, Taiwan.
Tarr,, G., Müller,, S., & Weber,, N. C. (2016). Robust estimation of precision matrices under contamination. Computational Statistics %26 Data Analysis, 93, 404–420.
Tax,, D. M. J., & Duin,, R. P. W. (2004). Support vector data description. Machine Learning, 54(1), 45–66.
Thompson,, W. R. (1935). On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation. The Annals of Mathematical Statistics, 6(4), 214–219.
Ting,, K. M., & Witten,, I. H. (1999). Issues in stacked generalization. Journal of Artificial Intelligence Research, 10, 271–289.
Todorov,, V., & Filzmoser,, P. (2009). An object‐oriented framework for robust multivariate analysis. Journal of Statistical Software, 32(3), 1–47.
Tsay,, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal of Forecasting, 7, 1–20.
Tukey,, J. (1977). Exploratory data analysis. Reading, MA: Addison‐Wesley.
Valentini,, G. & Masulli,, F. (2002). Ensembles of learning machines. In Proceedings of the 13th Italian Workshop on Neural Nets (pp. 3–22). Vietri, Italy.
Vinh,, N. X., Chan,, J., Bailey,, J., Leckie,, C., Ramamohanarao,, K., & Pei,, J. (2015). Scalable outlying‐inlying aspects discovery via feature ranking. In Proceedings of the 19th Pacific‐Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (pp. 422–434). Ho Chi Minh City, Vietnam.
Vinh,, N. X., Chan,, J., Romano,, S., Bailey,, J., Leckie,, C., Ramamohanarao,, K., & Pei,, J. (2016). Discovering outlying aspects in large datasets. Data Mining and Knowledge Discovery, 30(6), 1520–1555.
Wang,, X. & Davidson,, I. (2009). Discovering contexts and contextual outliers using random walks in graphs. In Proceedings of the 9th IEEE International Conference on Data Mining (ICDM) (pp. 1034–1039). Miami, FL.
Wang,, Y., Parthasarathy,, S., & Tatikonda,, S. (2011). Locality sensitive outlier detection: A ranking driven approach. In Proceedings of the 27th International Conference on Data Engineering (ICDE) (pp. 410–421). Hannover, Germany.
Warrender,, C., Forrest,, S., & Pearlmutter,, B. (1999). Detecting intrusions using system calls: Alternative data models. In Proceedings of the 1999 I.E. Symposium on Security and Privacy (pp. 133–145). Oakland, CA.
Yamanishi,, K., Takeuchi,, J. I., Williams,, G., & Milne,, P. (2000). On‐line unsupervised outlier detection using finite mixture with discounting learning algorithms. In Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 320–324). Boston, MA.
Yamanishi,, K., Takeuchi,, J. I., Williams,, G., & Milne,, P. (2004). On‐line unsupervised outlier detection using finite mixture with discounting learning algorithms. Data Mining and Knowledge Discovery, 8, 275–300.
Yu,, J. X., Qian,, W., Lu,, H., & Zhou,, A. (2006). Finding centric local outliers in categorical/numerical spaces. Knowledge and Information Systems, 9(3), 309–338.
Zhang,, E., & Zhang,, Y. (2009). Average precision. In L. Liu, & M. T. Özsu, (Eds.), Encyclopedia of database systems (pp. 192–193). Boston, MA: Springer.
Zhang,, J., Lou,, M., Ling,, T. W., & Wang,, H. (2004). HOS‐Miner: A system for detecting outlying subspaces of high‐dimensional data. In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB) (pp. 1265–1268). Toronto, Canada.
Zhang,, X., Dou,, W. C., He,, Q., Zhou,, R., Leckie,, C., Ramamohanarao,, K., et al. (2017). LSHiForest: A generic framework for fast tree isolation based ensemble anomaly analysis. In Proceedings of the 33rd International Conference on Data Engineering (ICDE) (pp. 983–994). San Diego, CA.
Zhu,, C., Kitagawa,, H., & Faloutsos,, C. (2005). Example‐based robust outlier detection in high dimensional datasets. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM) (pp. 829–832). Houston, TX.
Zimek,, A., Campello,, R. J. G. B., & Sander,, J. (2013). Ensembles for unsupervised outlier detection: Challenges and research questions. ACM SIGKDD Explorations, 15(1), 11–22.
Zimek,, A., Campello,, R. J. G. B., & Sander,, J. (2014). Data perturbation for outlier detection ensembles. In Proceedings of the 26th International Conference on Scientific and Statistical Database Management (SSDBM) (pp. 13:1–13:12). Aalborg, Denmark.
Zimek,, A., Gaudet,, M., Campello,, R. J. G. B., & Sander,, J. (2013). Subsampling for efficient and effective unsupervised outlier detection ensembles. In Proceedings of the 19th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (pp. 428–436). Chicago, IL.
Zimek,, A., Schubert,, E., & Kriegel,, H. P. (2012). A survey on unsupervised outlier detection in high‐dimensional numerical data. Statistical Analysis and Data Mining, 5(5), 363–387.
Zimek,, A., & Vreeken,, J. (2015). The blind men and the elephant: On meeting the problem of multiple truths in data from clustering and pattern mining perspectives. Machine Learning, 98(1–2), 121–155.