Abell,, M. (2014). SAS text miner. Scotts Valley, CA: CreateSpace Independent Publishing Platform.
Afantenos,, S., Karkaletsis,, V., & Stamatopoulos,, P. (2005). Summarization from medical doc‐uments: A survey. Artificial Intelligence in Medicine, 33(2), 157–177.
Allahyari,, M., Pouriyeh,, S., Assefi,, M., Safaei,, S., Trippe,, E. D., Gutierrez,, J. B., & Kochut,, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:170702919.
Aronson,, A. R., & Lang,, F. M. (2010). An overview of MetaMap: Historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3), 229–236.
Asghar,, M. Z., Qasim,, M., Ahmad,, B., Ahmad,, S., Khan,, A., & Khan,, I. A. (2013). Health miner: Opinion extraction from user generated health reviews. International Journal of Academic Research, 5(6), 279–284.
Baron,, J. A., Senn,, S., Voelker,, M., Lanas,, A., Laurora,, I., Thielemann,, W., … McCarthy,, D. (2013). Gastrointestinal adverse effects of short‐term aspirin use: A meta‐analysis of published randomized controlled trials. Drugs in R%26D, 13(1), 9–16.
Benton,, A., Hill,, S., Ungar,, L., Chung,, A., Leonard,, C., Freeman,, C., & Holmes,, J. H. (2011). A system for de‐identifying medical message board text. BMC Bioinformatics, 12(3), 1–10. https://doi.org/10.1186/1471-2105-12-S3-S2
Bialecki,, A., Muir,, R., Ingersoll,, G., & Imagination,, L. (2012). Apache lucene 4. Paper presented at SIGIR 2012 Workshop on Open Source Information Retrieval (p. 17), Portland, OR.
Bodenreider,, O. (2004). The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Research, 32(suppl 1), D267–D270.
Byrd,, R. J., Steinhubl,, S. R., Sun,, J., Ebadollahi,, S., & Stewart,, W. F. (2014). Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records. International Journal of Medical Informatics, 83(12), 983–992.
Carrero,, F., Cortizo,, J. C., & Gomez,, J. M. (2008). Building a Spanish MMTx by using automatic translation and biomedical ontologies. Paper presented at International Conference on Intelligent Data Engineering and Automated Learning (pp 346–353), Springer, Berlin, Germany.
Castro,, V. M., Minnier,, J., Murphy,, S. N., Kohane,, I., Churchill,, S. E., Gainer,, V., … Belliveau,, R. A., Jr. (2015). Validation of electronic health record phenotyping of bipolar disorder cases and controls. American Journal of Psychiatry, 172(4), 363–372.
Chapman,, W. W., Bridewell,, W., Hanbury,, P., Cooper,, G. F., & Buchanan,, B. G. (2001). A simple algorithm for identifying negated fi and diseases in discharge summaries. Journal of Biomedical Informatics, 34(5), 301–310.
Chen,, H., Fuller,, S. S., Friedman,, C., & Hersh,, W. (2005). Knowledge management, data mining, and text mining in medical informatics. Paper presented at Medical Informatics (pp 3–33), Springer, Bostan, MA.
Cohan,, A., Fong,, A., Ratwani,, R. M., & Goharian,, N. (2017). Identifying harm events in clinical care through medical narratives. In Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics (pp. 52–59). Boston, MA: ACM.
Cole,, T. S., Frankovich,, J., Iyer,, S., LePendu,, P., Bauer‐Mehren,, A., & Shah,, N. H. (2013). Profiling risk factors for chronic uveitis in juvenile idiopathic arthritis: A new model for EHR‐based research. Pediatric Rheumatology, 11(1), 45.
Collier,, N. (2012). Uncovering text mining: A survey of current work on web‐based epidemic intelligence. Global Public Health, 7(7), 731–749.
Collier,, N., Doan,, S., Kawazoe,, A., Goodwin,, R. M., Conway,, M., Tateno,, Y., … Taniguchi,, K. (2008). BioCaster: Detecting public health rumors with a web‐based text mining system. Bioinformatics, 24(24), 2940–2941.
Collobert,, R., Weston,, J., Bottou,, L., Karlen,, M., Kavukcuoglu,, K., & Kuksa,, P. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(August), 2493–2537.
Cook,, D. J., & Holder,, L. B. (1994). Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research, 1, 231–255.
Corley,, C. D., Cook,, D. J., Mikler,, A. R., & Singh,, K. P. (2010). Text and structural data mining of infl za mentions in web and social media. International Journal of Environmental Research and Public Health, 7(2), 596–615.
Cunningham,, H., Maynard,, D., Bontcheva,, K, & Tablan,, V. (2002). A framework and graphical development environment for robust NLP tools and applications. Paper presented at ACL (pp. 168–175)
Dandapat,, S., & Way,, A. (2016). Improved named entity recognition using machine translation‐based cross‐lingual information. Computacion y Sistemas, 20(3), 495–504.
Delespierre,, T., Denormandie,, P., Bar‐Hen,, A., & Josseran,, L. (2017). Empirical advances with text mining of electronic health records. BMC Medical Informatics and Decision Making, 17(1), 127.
Donnelly,, K. (2006). SNOMED‐CT: The advanced terminology and coding system for eHealth. Studies in Health Technology and Informatics, 121, 279.
Dreiseitl,, S., & Ohno‐Machado,, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5), 352–359.
Elhadad,, N., Kan,, M. Y., Klavans,, J. L., & McKeown,, K. (2005). Customization in a unifi framework for summarizing medical literature. Artificial Intelligence in Medicine, 33(2), 179–198.
El‐Kishky,, A., Song,, Y., Wang,, C., Voss,, C. R., & Han,, J. (2014). Scalable topical phrase mining from text corpora. Proceedings of the VLDB Endowment, 8(3), 305–316.
Erkan,, G., & Radev,, D. R. (2004). Lexrank: Graph‐based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 22, 457–479.
Fabian,, G., W¨achter,, T., & Schroeder,, M. (2012). Extending ontologies by fi siblings using set expansion techniques. Bioinformatics, 28(12), i292–i300.
Fang,, Y. C., Huang,, H. C., Chen,, H. H., & Juan,, H. F. (2008). TCMGeneDIT: A database for associated traditional Chinese medicine, gene and disease information using text mining. BMC Complementary and Alternative Medicine, 8(1), 58.
Feldman,, K., Hazekamp,, N, & Chawla,, N. V. (2016). Mining the clinical narrative: All text are not equal. Paper presented at 2016 I.E. International Conference on Healthcare Informatics (ICHI) (pp. 271–280), IEEE
Feldman,, R., & Sanger,, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. New York, NY: Cambridge University Press.
Ferrandez,, O., South,, B. R., Shen,, S., & Meystre,, S. M. (2012). A hybrid stepwise approach for deidentifying person names in clinical documents. In Proceedings of the 2012 workshop on biomedical natural language processing (pp. 65–72). Stroudsburg, PA: Association for Computational Linguistics.
Ferrucci,, D., & Lally,, A. (2004). UIMA: An architectural approach to unstructured information processing in the corporate research environment. Natural Language Engineering, 10(3–4), 327–348.
Ferrucci,, D., Levas,, A., Bagchi,, S., Gondek,, D., & Mueller,, E. T. (2013). Watson: Beyond jeopardy! Artificial Intelligence, 199, 93–105.
Fiszman,, M., Demner‐Fushman,, D., Kilicoglu,, H., & Rindflesch,, T. C. (2009). Automatic summarization of MEDLINE citations for evidence‐based medical treatment: A topic‐oriented evaluation. Journal of Biomedical Informatics, 42(5), 801–813.
Frunza,, O., Inkpen,, D., Matwin,, S., Klement,, W., & O`blenis,, P. (2011). Exploiting the systematic review protocol for classification of medical abstracts. Artificial Intelligence in Medicine, 51(1), 17–25.
Goldstein,, I., Arzumtsyan,, A., & Uzuner,, O. (2007). Three approaches to automatic assignment of ICD‐9‐CM codes to radiology reports. Paper presented at AMIA Annual Symposium Proceedings, American Medical Informatics Association (p 279), vol. 2007.
Gupta,, V., & Lehal,, G. S., (2009). A survey of text mining techniques and applications. Journal of Emerging Technologies in Web Intelligence, 1(1), 60–76.
Hahn,, U., & Mani,, I. (2000). The challenges of automatic summarization. Computer, 33(11), 29–36.
Harpaz,, R., Callahan,, A., Tamang,, S., Low,, Y., Odgers,, D., Finlayson,, S., … Shah,, N. H. (2014). Text mining for adverse drug events: The promise, challenges, and state of the art. Drug Safety, 37(10), 777–790.
Heintzelman,, N. H., Taylor,, R. J., Simonsen,, L., Lustig,, R., Anderko,, D., Haythornthwaite,, J. A., … Bova,, G. S. (2013). Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text. Journal of the American Medical Informatics Association, 20(5), 898–905.
Huang,, C., & Lu,, Z. (2016). Community challenges in biomedical text mining over 10 years: Success, failure and the future. Briefings in Bioinformatics, 17(1), 132–144.
Jonnagaddala,, J., Dai,, H. J., Ray,, P., & Liaw,, S. T. (2015). A preliminary study on automatic identification of patient smoking status in unstructured electronic health records. ACL‐IJCNLP, 2015, 147–151.
Just,, E. (2017). How to use text analytics in healthcare to improve outcomes—Why you need more than NLP. Health catalyst data: quality, management, governance. Retrieved from: https://wwwhealthcatalystcom/how-to-use-text-analytics-in-healthcare-to-improve-outcomes
Kim,, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:14085882
Kipper‐Schuler,, K., Kaggal,, V., Masanz,, J., Ogren,, P., & Savova,, G. (2008). System evaluation on a named entity corpus from clinical notes. Paper presented at: Language Resources and Evaluation Conference, LREC (pp. 3001–3007)
Kotsiantis,, S. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
Lafferty,, J., McCallum,, A., & Pereira,, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. 18th International Conference on Machine Learning (pp. 282–289). San Francisco, CA: Morgan Kaufmann.
Leeper,, N. J., Bauer‐Mehren,, A., Iyer,, S. V., LePendu,, P., Olson,, C., & Shah,, N. H. (2013). Practice‐based evidence: Profiling the safety of cilostazol by text‐mining of clinical notes. PLoS One, 8(5), e63499.
Lin,, Y. K., Chen,, H., & Brown,, R. A. (2013). MedTime: A temporal information extraction system for clinical narratives. Journal of Biomedical Informatics, 46, S20–S28.
Luther,, S., Berndt,, D., Finch,, D., Richardson,, M., Hickling,, E., & Hickam,, D. (2011). Using statistical text mining to supplement the development of an ontology. Journal of Biomedical Informatics, 44, S86–S93.
McCallum,, A. K. (2002). Mallet: A machine learning for language toolkit. Massachusetts: Mallet.
McKeown,, K. R., Chang,, S. F., Cimino,, J., Feiner,, S., Friedman,, C., Gravano,, L., et al. (2001). PERSIVAL, a system for personalized search and summarization over multimedia healthcare information. In Proceedings of the 1st ACM/IEEE‐CS Joint Conference on Digital Libraries (pp. 331–340). New York, NY: ACM.
Metais,, E., Nakache,, D., & Timsit,, J. F. (2006). Automatic classification of medical reports, the cirea project. In Proceedings of the 5th WSEAS international conference on telecommunications and informatics (pp. 354–359). Istanbul, Turkey: World Scientific and Engineering Academy and Society (WSEAS).
Meystre,, S., & Haug,, P. J. (2005). Evaluation of medical problem extraction from electronic clinical documents using MetaMap transfer (MMTx). Studies in Health Technology and Informatics, 116, 823–828.
Michalski,, R. S., Carbonell,, J. G., & Mitchell,, T. M. (2013). Machine learning: An artificial intelligence approach. Berlin Heidelberg: Springer Science %26 Business Media.
Mikolov,, T., Chen,, K., Corrado,, G., & Dean,, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781
Nadeau,, D., & Sekine,, S. (2007). A survey of named entity recognition and classification. Lingvisticae Investigationes, 30(1), 3–26.
Pakhomov,, S., Weston,, S. A., Jacobsen,, S. J., Chute,, C. G., Meverden,, R., Roger,, V. L., et al. (2007). Electronic medical records for clinical research: Application to the identification of heart failure. The American Journal of Managed Care, 13(6 Part 1), 281–288.
Palanisamy,, V., & Thirunavukarasu,, R. (2017). Implications of big data analytics in developing healthcare frameworks–A review. Journal of King Saud University‐Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2017.12.007
Paul,, M. J., & Dredze,, M. (2012). A model for mining public health topics from twitter. Health, 11, 16–16.
Portela,, F., Cabral,, A., Abelha,, A., Salazar,, M., Quintas,, C., Machado,, J., … & Santos,, M. F. (2013). Knowledge acquisition process for intelligent decision support in critical health care. In Information Systems and Technologies for Enhancing Health and Social Care (pp. 55–68). Hershey, PA: IGI Global.
Porter,, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.
Quinlan,, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA: Morgan Kaufmann Publishers Inc.
Ramshaw,, L. A., & Marcus,, M. P. (1999). Text chunking using transformation‐based learning. In IOS Press (Ed.), Natural language processing using very large corpora (pp. 157–176). Dordrecht: Springer.
Rindflesch,, T. C., Kilicoglu,, H., Fiszman,, M., Rosemblat,, G., & Shin,, D. (2011). Semantic MED‐LINE: An advanced information management application for biomedicine. Information Services %26 Use, 31(1–2), 15–21.
Rindflh,, T. C., & Fiszman,, M. (2003). The interaction of domain knowledge and linguistic structure in natural language processing: Interpreting hypernymic propositions in biomedical text. Journal of Biomedical Informatics, 36(6), 462–477.
Rink,, B., Harabagiu,, S., & Roberts,, K. (2011). Automatic extraction of relations between medical concepts in clinical texts. Journal of the American Medical Informatics Association, 18(5), 594–600.
Roberts,, A., Gaizauskas,, R., Hepple,, M., Davis,, N., Demetriou,, G., Guo,, Y., et al. (2007). The CLEF corpus: Semantic annotation of clinical text. In American Medical Informatics Association (Ed.), AMIA annual symposium proceedings (Vol. 2007, p. 625). Bethesda, MA: American Medical Informatics Association.
Roberts,, A., Gaizauskas,, R., Hepple,, M., Demetriou,, G., Guo,, Y., Roberts,, I., & Setzer,, A. (2009). Building a semantically annotated corpus of clinical texts. Journal of Biomedical Informatics, 42(5), 950–966.
Roberts,, K., & Harabagiu,, S. M. (2011). A flexible framework for deriving assertions from electronic medical records. Journal of the American Medical Informatics Association, 18(5), 568–573.
Roberts,, K., Rink,, B., & Harabagiu,, S. M. (2013). A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text. Journal of the American Medical Informatics Association, 20(5), 867–875.
Sarkar,, K., Nasipuri,, M., & Ghose,, S. (2011). Using machine learning for medical document summarization. International Journal of Database Theory and Application, 4(1), 31–48.
Savova,, G. K., Masanz,, J. J., Ogren,, P. V., Zheng,, J., Sohn,, S., Kipper‐Schuler,, K. C., & Chute,, C. G. (2010). Mayo clinical text analysis and knowledge extraction system (cTAKES): Architecture, component evaluation and applications. Journal of the American Medical Informatics Association, 17(5), 507–513.
Schapire,, R. E., & Singer,, Y. (2000). BoosTexter: A boosting‐based system for text categorization. Machine Learning, 39(2–3), 135–168.
Sebastiani,, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys (CSUR), 34(1), 1–47.
Shickel,, B., Tighe,, P. J., Bihorac,, A., & Rashidi,, P. (2017). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604.
Skeppstedt,, M., Kvist,, M., Nilsson,, G. H., & Dalianis,, H. (2014). Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study. Journal of Biomedical Informatics, 49, 148–158.
Sun,, W., Cai,, Z., Liu,, F., Fang,, S., & Wang,, G. (2017), A survey of data mining technology on electronic medical records. Paper presented at 2017 I.E. 19th International Conference on e‐Health Networking, Applications and services (Healthcom) (pp. 1–6). https://doi.org/10.1109/HealthCom.2017.8210774
Tafti,, A. P., Badger,, J., LaRose,, E., Shirzadi,, E., Mahnke,, A., Mayer,, J., … Peissig,, P. (2017). Adverse drug event discovery using biomedical literature: A big data neural network adventure. JMIR Medical Informatics, 5(4), e51.
Uzuner,, O., Mailoa,, J., Ryan,, R., & Sibanda,, T. (2010). Semantic relations for problem‐oriented medical records. Artificial Intelligence in Medicine, 50(2), 63–73.
Van Mulligen,, E. M., Fourrier‐Reglat,, A., Gurwitz,, D., Molokhia,, M., Nieto,, A., Trifiro,, G., … Furlong,, L. I. (2012). The EU‐ADR corpus: Annotated drugs, diseases, targets, and their relationships. Journal of Biomedical Informatics, 45(5), 879–884.
Vijayakrishnan,, R., Steinhubl,, S. R., Ng,, K., Sun,, J., Byrd,, R. J., Daar,, Z., et al. (2014). Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. Journal of Cardiac Failure, 20(7), 459–464.
Wang,, Y., & Patrick,, J. (2009). Cascading classifiers for named entity recognition in clinical notes. Paper presented at Proceedings of the Workshop on Biomedical Information Extraction, Association for computational linguistics (pp. 42–49)
Xia,, Y., Zhong,, X., Liu,, P., Tan,, C., Na,, S., Hu,, Q., & Huang,, Y. (2013). Combining MetaMap and cTAKES in Disorder Recognition: THCIB at CLEF eHealth Lab 2013 Task 1. Paper presented at: CLEF (Working Notes).
Xie,, B., Ding,, Q., Han,, H., & Wu,, D. (2013). miRCancer: A microRNA–cancer association database constructed by text mining on literature. Bioinformatics, 29(5), 638–644.
Yang,, Y., Xie,, P., Gao,, X., Cheng,, C., Li,, C., Zhang,, H., & Xing,, E. (2017). Predicting discharge medications at admission time based on deep learning. arXiv preprint arXiv:171101386
Yetisgen‐Yildiz,, M., & Pratt,, W. (2005). The effect of feature representation on MEDLINE document classification. Paper presented at AMIA Annual Symposium Proceedings, American Medical Informatics Association (p. 849), vol. 2005
Yoon,, S., Elhadad,, N., & Bakken,, S. (2013). A practical approach for content mining of tweets. American Journal of Preventive Medicine, 45(1), 122–129.
Yu,, W., Liu,, T., Valdez,, R., Gwinn,, M., & Khoury,, M. J. (2010). Application of support vector machine modeling for prediction of common diseases: The case of diabetes and prediabetes. BMC Medical Informatics and Decision Making, 10(1), 16.
Zhang,, H., Fiszman,, M., Shin,, D., Miller,, C. M., Rosemblat,, G., & Rindflesch,, T. C. (2011). Degree centrality for semantic abstraction summarization of therapeutic studies. Journal of Biomedical Informatics, 44(5), 830–838.
Zhang,, Y., Jin,, R., & Zhou,, Z. H. (2010). Understanding bag‐of‐words model: A statistical framework. International Journal of Machine Learning and Cybernetics, 1(1–4), 43–52.
Zhu,, X., Cherry,, C., Kiritchenko,, S., Martin,, J., & De Bruijn,, B. (2013). Detecting concept relations in clinical text: Insights from a state‐of‐the‐art model. Journal of Biomedical Informatics, 46(2), 275–285.
Zuccon,, G., Wagholikar,, A. S., Nguyen,, A. N., Butt,, L., Chu,, K., Martin,, S., & Greenslade,, J. (2013). Automatic classification of free‐text radiology reports to identify limb fractures using machine learning and the SNOMED CT ontology. Paper presented at: AMIA Summits on Translational Science Proceedings 2013 (p. 300).