Adadi,, A., & Berrada,, M. (2018). Peeking inside the black‐box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.
Anderson,, P. W. (1972). More is different. Science, 177(4047), 393–396.
Arrieta,, A. B., Díaz‐Rodríguez,, N., Del Ser,, J., Bennetot,, A., Tabik,, S., Barbado,, A., … Herrera,, F. (2019). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. arXiv preprint arXiv:1910.10045.
Bak,, P. (2013). How nature works: The science of self‐organized criticality. New York, NY: Springer Science %26 Business Media.
Breiman,, L. (2001a). Random forests. Machine Learning, 45, 5–32.
Breiman,, L. (2001b). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–231.
Cios,, K. J., Pedrycz,, W., Swiniarski,, R. W., & Kurgan,, L. A. (2007). Data mining: A knowledge discovery approach. New York, NY: Springer Science %26 Business Media.
Doran,, D., Schulz,, S., & Besold,, T. R. (2017). What does explainable AI really mean? A new conceptualization of perspectives. arXiv preprint arXiv:1710.00794.
Emmert‐Streib,, F. (2003). Aktive Computation in offenen Systemen. Lerndynamiken in biologischen Systemen: Vom Netzwerk zum Organismus. (Ph.D. thesis). University of Bremen.
Emmert‐Streib,, F., & Dehmer,, M. (2019). Defining data science by a data‐driven quantification of the community. Machine Learning and Knowledge Extraction, 1(1), 235–251.
Emmert‐Streib,, F., Moutari,, S., & Dehmer,, M. (2016). The process of analyzing data is the emergent feature of data science. Frontiers in Genetics, 7, 12.
Emmert‐Streib,, F., Moutari,, S., & Dehmer,, M. (2019). A comprehensive survey of error measures for evaluating binary decision making in data science. WIREs: Data Mining and Knowledge Discovery, 9(5), e1303.
Feldman,, J. A., & Ballard,, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6(3), 205–254.
Gallant,, S. I. (1988). Connectionist expert systems. Communications of the ACM, 31(2), 152–170.
Goebel,, R., Chander,, A., Holzinger,, K., Lecue,, F., Akata,, Z., Stumpf,, S., … Holzinger,, A. (2018). Explainable AI: The new 42? In International cross‐domain conference for machine learning and knowledge extraction (pp. 295–303). Cham, Switzerland: Springer.
Gorelick,, R. (2011). What is theory? Ideas in Ecology and Evolution, 4. https://doi.org/10.4033/iee.2011.4.1.c.
Guidotti,, R., Monreale,, A., Ruggieri,, S., Turini,, F., Giannotti,, F., & Pedreschi,, D. (2019). A survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), 93.
Gunning,, D. (2017). Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web, 2.
Halvorson,, H. (2015). Scientific theories. In The Oxford handbook of philosophy of science. http://philsci-archive.pitt.edu/11347/.
Haste,, T., Tibshirani,, R., & Friedman,, J. (2009). The elements of statistical learning: Data mining, inference and prediction. New York, NY: Springer.
Hochreiter,, S., & Schmidhuber,, J. (1997). Long short‐term memory. Neural Computation, 9(8), 1735–1780.
Holzinger,, A., Biemann,, C., Pattichis,, C. S., & Kell,, D. B. (2017). What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923.
Holzinger,, A. (2005). Usability engineering methods for software developers. Communications of the ACM, 48(1), 71–74.
Holzinger,, A., Carrington,, A., & Mueller,, H. (2020). Measuring the quality of explanations: The system causability scale (SCS). Comparing human and machine explanations. KI – Künstliche Intelligenz (German Journal of Artificial intelligence), 34, 193–198.
Holzinger,, A., Langs,, G., Denk,, H., Zatloukal,, K., & Müller,, H. (2019). Causability and explainability of artificial intelligence in medicine. WIREs: Data Mining and Knowledge Discovery, 9(4), e1312.
Kreps,, D. (2018). Notes on the theory of choice. New York, NY: Routledge.
Krizhevsky,, A., Sutskever,, I., & Hinton,, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira,, C. J. C. Burges,, L. Bottou, & K. Q. Weinberger, (Eds.) Advances in neural information processing systems (pp. 1097–1105). Red Hook, NY: Curran Associates, Inc.
Lake,, B. M., Ullman,, T. D., Tenenbaum,, J. B., & Gershman,, S. J. (2017). Building machines that learn and think like people. In Behavioral and Brain Sciences, 40, e253.
Leilani,, H., Gilpin,, D. B., Yuan,, B. Z., Bajwa,, A., Specter,, M., & Kagal,, L. (2018, 2018). Explaining explanations: An overview of interpretability of machine learning. In IEEE 5th international conference on data science and advanced analytics (DSAA) (pp. 80–89). Turin, Italy: IEEE.
Levin,, S., Xepapadeas,, T., Crépin,, A.‐S., Norberg,, J., De Zeeuw,, A., Folke,, C., … Walker,, B. (2013). Social–ecological systems as complex adaptive systems: Modeling and policy implications. Environment and Development Economics, 18(2), 111–132.
Lipton,, Z. C. (2018). The mythos of model interpretability. Queue, 16(3), 30–57.
Mantegna,, R. N., & Stanley,, H. E. (1995). Scaling behaviour in the dynamics of an economic index. Nature, 376, 46–49.
Minsky,, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1), 8–30.
Mittelstadt,, B., Russell,, C., & Wachter,, S. (2019). Explaining explanations in AI. In Proceedings of the conference on fairness, accountability, and transparency (pp. 279–288). Atlanta, GA: ACM.
Popper,, K. R. (1959). The logic of scientific discovery. New York, NY: Basic Books.
Rovelli,, C. (2004). Quantum gravity. Cambridge, England: Cambridge University Press.
Rudin,, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.
Russell,, S. J., & Norvig,, P. (2016). Artificial intelligence: A modern approach. Harlow, England: Pearson.
Schapire,, R. E., & Freund,, Y. (2012). Boosting: Foundations and algorithms. In Adaptive computation and machine learning series. Cambridge, MA: MIT Press.
Schlosshauer,, M., Kofler,, J., & Zeilinger,, A. (2013). A snapshot of foundational attitudes toward quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 222–230.
Schuster,, H. G. (2002). Complex adaptive systems. Saarbrücken, Germany: Scator Verlag.
Shmueli,, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.
Suppes,, P. (1964). What is a scientific theory? US Information Agency, Voice of America Forum.
Tjoa,, E., & Guan,, C. (2019). A survey on explainable artificial intelligence (XAI): Towards medical XAI. arXiv preprint arXiv:1907.07374.
Vapnik,, V. N. (1995). The nature of statistical learning theory. New York, NY: Springer.
Xu,, F., Uszkoreit,, H., Du,, Y., Fan,, W., Zhao,, D., & Zhu,, J. (2019). Explainable AI: A brief survey on history, research areas, approaches and challenges. In CCF international conference on natural language processing and Chinese computing (pp. 563–574). Cham, Switzerland: Springer.
Zhou,, Z.‐H. (2012). Ensemble methods: Foundations and algorithms. New York, NY: Chapman and Hall/CRC.