Abbasi,, M.‐A., & Liu,, H. (2013). Measuring user credibility in social media. In International Conference on Social Computing, Behavioral‐Cultural Modeling, and Prediction (pp. 441–448). Berlin: Springer.
Abokhodair,, N., Yoo,, D., & McDonald,, D. W. (2015). Dissecting a social botnet: Growth, content and influence in twitter. In Proceedings of the 18th ACM conference on Computer Supported Cooperative Work %26 Social Computing (pp. 839–851). New York, NY: ACM Publications.
Allcott,, H., & Gentzkow,, M. (2017). Social media and fake news in the 2016 election. Cambridge, MA: National Bureau of Economic Research.
Allport,, G. W., & Postman,, L. (1947). The psychology of rumor. Oxford, England: Henry Holt.
Anthony,, S. (1973). Anxiety and rumor. The Journal of Social Psychology, 89, 91–98.
Arun,, C. (2019). On WhatsApp, Rumours, and Lynchings. Economic %26 Political Weekly, 54(6), 30–35.
Barbier,, G., Feng,, Z., Gundecha,, P., & Liu,, H. (2013). Provenance Data in Social Media. Synthesis Lectures on Data Mining and Knowledge Discovery, 4(1), 1–84.
Bettencourt,, L. M. A., Cintrón‐Arias,, A., Kaiser,, D. I., & Castillo‐Chávez,, C. (2006). The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Physica A: Statistical Mechanics and its Applications, 364, 513–536.
Bian,, T., Xiao,, X., Xu,, T., Zhao,, P., Huang,, W., Rong,, Y., & Huang,, J. (2020). Rumor detection on social media with bi‐directional graph convolutional networks. arXiv Preprint arXiv, 2020, 2001.06362.
Boghardt,, T. (2009). Soviet bloc intelligence and its AIDS disinformation campaign. Studies in Intelligence, 53(4), 1–24.
Boididou,, C., Papadopoulos,, S., Zampoglou,, M., Apostolidis,, L., Papadopoulou,, O., & Kompatsiaris,, Y. (2018). Detection and visualization of misleading content on twitter. International Journal of Multimedia Information Retrieval, 7(1), 71–86 Springer.
Bovet,, A., & Makse,, H. A. (2019). Influence of fake news in twitter during the 2016 US presidential election. Nature Communications, 10(1), 1–14.
Breakstone,, J., Smith,, M., Wineburg,, S., Rapaport,, A., Carle,, J., Garland,, M., & Saavedra,, A. (2019). Student`s civic online reasoning: A national portrait. Stanford, CA: Stanford History Education Group %26 Gibson Consulting.
Bronstein,, M. V., Pennycook,, G., Bear,, A., Rand,, D. G., & Cannon,, T. D. (2019). Belief in fake news is associated with delusionality, dogmatism, religious fundamentalism, and reduced analytic thinking. Journal of Applied Research in Memory and Cognition, 8(1), 108–117.
Budak,, C., Agrawal,, D., & Abbadi,, A. E. (2011). Limiting the spread of misinformation in social networks. In Proceedings of the 20th International Conference on World Wide Web ‐ WWW 11. ACM Press. Retrieved from https://doi.org/10.1145%2F1963405.1963499
Cao,, Q., Sirivianos,, M., Yang,, X., & Pregueiro,, T. (2012). Aiding the detection of fake accounts in large scale social online services. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (p. 15). USENIX Association.
Castillo,, C., El‐Haddad,, M., Pfeffer,, J., & Stempeck,, M. (2014). Characterizing the life cycle of online news stories using social media reactions. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 211–223).
Chen,, S. (2018). Schools around the world are now teaching kids to spot fake news. Quartz. Retrieved from https://qz.com/1175155/a-special-class-how-to-teach-kids-to-spot-fake-news/.
Chollet,, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1251–1258).
Chu,, Z., Gianvecchio,, S., Wang,, H., & Jajodia,, S. (2012). Detecting automation of twitter accounts: Are you a human, bot, or cyborg? IEEE Transactions on Dependable and Secure Computing, 9(6), 811–824 IEEE.
Ciampaglia,, G. L., Shiralkar,, P., Rocha,, L. M., Bollen,, J., Menczer,, F., & Flammini,, A. (2015). Computational fact checking from knowledge networks. PLoS One, 10(6), e0128193.
Cui,, L., & Lee,, S. W. D. (2019). SAME: Sentiment‐aware multi‐modal embedding for detecting fake news.
De Maeyer,, D. (1997). Internet`s information highway potential. Internet Research.
Department of State. (1981). Forgery, disinformation and political operation. Department of State Bulletin, 81(2056), 52–55.
DiFonzo,, N., & Bordia,, P. (2007). Rumor psychology: Social and organizational approaches. Washington, DC: American Psychological Association.
Ding,, K., Li,, J., Bhanushali,, R., & Liu,, H. (2019). Deep anomaly detection on attributed networks. In Proceedings of the 2019 SIAM International Conference on Data Mining, SIAM. pp. 594–602.
Ding,, K., Li,, Y., Li,, J., Liu,, C., & Liu,, H. (2019). Graph neural networks with high‐order feature interactions. arXiv Preprint arXiv, 2019, 1908.07110.
Elder,, J. (2013, November). Inside a twitter robot factory; fake activity, often bought for publicity purposes, influences trending topics. Wall Street Journal (Online). Retrieved from https://www.wsj.com/articles/bogus-accounts-dog-twitter-1385335134.
Esmaeilzadeh,, S., Peh,, G. X., & Xu,, A. (2019). Neural abstractive text summarization and fake news detection. arXiv preprint arXiv:1904.00788.
Fernandez,, M., Alvarez,, L., & Nixon,, R. (2017, October 22). Still Waiting for FEMA in Texas and Florida After Hurricanes. The New York Times. Retrieved from https://www.nytimes.com/2017/10/22/us/fema-texas-florida-delays-.html.
Ferrara,, E., Varol,, O., Davis,, C., Menczer,, F., & Flammini,, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96–104 ACM.
Fetzer,, J. H. (2004). Disinformation: The use of false information. Minds and Machines, 14(2), 231–240 Springer.
George,, S. (2019, Januray 13). ‘Deepfakes’ called new election threat, with no easy fix. AP News.
Goldenberg,, J., Libai,, B., & Muller,, E. (2001a). Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Academy of Marketing Science Review, 9(3), 1–18.
Goldenberg,, J., Libai,, B., & Muller,, E. (2001b). Talk of the network: A complex systems look at the underlying process of word‐of‐mouth. Marketing Letters, 12(3), 211–223.
Goodfellow,, I., Pouget‐Abadie,, J., Mirza,, M., Xu,, B., Warde‐Farley,, D., Ozair,, S., …, Benjio,, Y. (2014). Generative adversarial nets. In Proceedings of the International Conference on Advances in Neural Information Processing Systems 27, Montreal, Quebec, Canada, pp. 2672–2680.
Granovetter,, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1443 University of Chicago Press.
Grenoble,, R. (2017, July 9). Hurricane Harvey is just the latest in Facebook`s fake news problem. Huffington Post. Retrieved from https://www.huffingtonpost.com/entry/facebook-hurricane-harvey-fake-news_us_59b17900e4b0354e441021fb.
Grinberg,, N., Joseph,, K., Friedland,, L., Swire‐Thompson,, B., & Lazer,, D. (2019). Fake news on twitter during the 2016 US presidential election. Science, 363(6425), 374–378.
Guacho,, G. B., Abdali,, S., Shah,, N., & Papalexakis,, E. E. (2018). Semi‐supervised Content‐Based Detection of Misinformation via Tensor Embeddings. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Retrieved from https://doi.org/10.1109%2Fasonam.2018.8508241.
Güera,, D., & Delp,, E. J. (2018). Deepfake video detection using recurrent neural networks. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). pp. 1–6.
Guess,, A., Nyhan,, B., & Reifler,, J. (2018). Selective Exposure to Misinformation: Evidence from the consumption of fake news during the 2016 US presidential campaign. Retrieved from https://www.dartmouth.edu/nyhan/fake-news-2016.pdf.
Haller,, A., & Holt,, K. (2019). Paradoxical populism: How PEGIDA relates to mainstream and alternative media. Information, Communication %26 Society, 22(12), 1665–1680.
Hasher,, L., Goldstein,, D., & Toppino,, T. (1977). Frequency and the conference of referential validity. Journal of Verbal Learning and Verbal Behavior, 16(1), 107–112.
Hernandez,, J. C., Hernandez,, C. J., Sierra,, J. M., & Ribagorda,, A. (2002). A first step towards automatic hoax detection. In Proceedings of the 36th Annual 2002 International Carnahan Conference on Security Technology. Retrieved from https://doi.org/10.1109%2Fccst.2002.1049234.
Hernon,, P. (1995). Disinformation and misinformation through the internet: Findings of an exploratory study. Government Information Quarterly, 12(2), 133–139.
Hirning,, N. P., Chen,, A., & Shankar,, S. (2017). Detecting and identifying bias‐heavy sentences in news articles. Technical report, Stanford University, Stanford, CA.
Hosseinimotlagh,, S., & Papalexakis,, E. E. (2018). Unsupervised content‐based identification of fake news articles with tensor decomposition ensembles. Proceedings of the Workshop on Misinformation and Misbehavior Mining on the Web (MIS2).
Infogram(2017, November 9). PolitiFact`s fake news almanac. Retrieved from https://infogram.com/politifacts-fake-news-almanac-1gew2vjdxl912nj.
Iyyer,, M., Enns,, P., Boyd‐Graber,, J., & Resnik,, P. (2014). Political ideology detection using recursive neural networks. In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics. Volume 1: Long Papers. pp. 1113–1122.
Janosch Delcker,, Z. W., & Scott,, M. (2020). The coronavirus fake news pandemic sweeping WhatsApp. Politico. Retrieved from https://www.politico.com/news/2020/03/16/coronavirus-fake-news-pandemic-133447
Jin,, F., Dougherty,, E., Saraf,, P., Cao,, Y., & Ramakrishnan,, N. (2013). Epidemiological modeling of news and rumors on twitter. In Proceedings of the 7th Workshop on Social Network Mining and Analysis (p. 8). ACM.
Jin,, Z., Cao,, J., Zhang,, Y., & Luo,, J. (2016). News verification by exploiting conflicting social viewpoints in microblogs. In Thirtieth AAAI Conference on Artificial Intelligence.
Jozefowicz,, R., Vinyals,, O., Schuster,, M., Shazeer,, N., & Wu,, Y. (2016). Exploring the limits of language modeling. arXiv Preprint arXiv:1602.02410.
Keersmaecker,, J. D., & Roets,, A. (2017). ‘Fake news’: Incorrect but hard to correct. The role of cognitive ability on the impact of false information on social impressions. Intelligence, 65, 107–110. https://doi.org/10.1016%2Fj.intell.2017.10.005
Kelion,, L., & Silva,, S. (2016). Pro‐Clinton bots ‘fought back but outnumbered in second debate’. BBC News. Retrieved from http://www.bbc.com/news/technology-37703565.
Khaund,, T., Al‐Khateeb,, S., Tokdemir,, S., & Agarwal,, N. (2018). Analyzing social bots and their coordination during natural disasters. In International Conference on Social Computing, Behavioral‐Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation (pp. 207–212). Springer.
Kim,, J., Tabibian,, B., Oh,, A., Schölkopf,, B., & Gomez‐Rodriguez,, M. (2018). Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 324–332).
Kipf,, T. N., & Welling,, M. (2016). Semi‐supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Kochkina,, E., Liakata,, M., & Zubiaga,, A. (2018). PHEME dataset for Rumour Detection and Veracity Classification. Retrieved from https://figshare.com/articles/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078.
Koh,, Y. (2014, March). Only 11% of New Twitter Users in 2012 Are Still Tweeting. Dow Jones Institutional News. Retrieved from https://blogs.wsj.com/digits/2014/03/21/new-report-spotlights-twitters-retention-problem/.
Kudugunta,, S., & Ferrara,, E. (2018). Deep neural networks for bot detection. Information Sciences, 467, 312–322.
Kumar,, S., West,, R., & Leskovec,, J. (2016). Disinformation on the web. In Proceedings of the 25th International Conference on World Wide Web, WWW `16. ACM Press. Retrieved from https://doi.org/10.1145%2F2872427.2883085.
Lakshmanan,, L. V. S., Simpson,, M., & Thirumuruganathan,, S. (2019). Combating fake news: A data management and mining perspective. Proceedings of the VLDB Endowment, 12(12), 1990–1993.
Lazer,, D. M. J., Baum,, M. A., Benkler,, Y., Berinsky,, A. J., Greenhill,, K. M., Menczer,, F., … Zittrain,, J. L. (2018). The science of fake news. Science, 359(6380), 1094–1096.
Lee,, D. (2018, February 3). Deepfakes porn has serious consequences. BBC News.
Lee,, K., Eoff,, B. D., & Caverlee,, J. (2011). Seven months with the devils: A long‐term study of content polluters on twitter. In ICWSM (pp. 185–192). AAAI. Retrieved from https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2780
Lee,, S., & Kim,, J. (2014). Early filtering of ephemeral malicious accounts on twitter. Computer Communications, 54, 48–57.
Lessenski,, M. (2018). Common sense wanted: Resilience to ‘post‐truth’ and its predictors in the new media literacy index 2018. Manhattan, NY: Open Society Institute.
Li,, Y., Chang,, M.‐C., & Lyu,, S. (2018). In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking. arXiv Preprint arXiv:1806.02877.
Liu,, Y., & Wu,, Y.‐F. B. (2018). Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In Thirty‐second AAAI Conference on Artificial Intelligence.
Manning,, M. J., Manning,, M., & Romerstein,, H. (2004). Historical dictionary of American propaganda. West Port, CT: Greenwood Publishing Group.
Marcus,, G. (2017). How affective intelligence can help us understand politics. Emotion Researcher. Retrieved from https://emotionresearcher.com/how-affective-intelligence-theory-can-help-us-understand-politics/
Marra,, F., Gragnaniello,, D., Cozzolino,, D., & Verdoliva,, L. (2018). Detection of GAN‐generated fake images over social networks. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). pp. 384–389. IEEE.
Mascott,, A. (2019). Helping kids learn to evaluate what they see online. Retrieved from https://blog.google/technology/families/be-internet-awesome-media-literacy/.
Media Bias/Fast Check(2020). Search and Learn the Bias of News Media. Retrieved from https://mediabiasfactcheck.com/.
Mitra,, T., & Gilbert,, E. (2015). Credbank: A large‐scale social media corpus with associated credibility annotations. In Ninth International AAAI Conference on Web and Social Media. Retrieved from https://github.com/compsocial/CREDBANK-data.
Monti,, F., Frasca,, F., Eynard,, D., Mannion,, D., & Bronstein,, M. M. (2019). Fake News Detection on Social Media using Geometric Deep Learning. arXiv preprint arXiv:1902.06673.
Morstatter,, F., Wu,, L., Nazer,, T. H., Carley,, K. M., & Liu,, H. (2016). A new approach to bot detection: striking the balance between precision and recall. In 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), (pp. 533–540). IEEE.
Moturu,, S. T., & Liu,, H. (2009). Evaluating the trustworthiness of Wikipedia articles through quality and credibility. In Proceedings of the 5th International Symposium on Wikis and Open Collaboration (pp. 1–2).
Nami Sumida,, M. W., & Mitchell,, A. (2019). The role of social media in news. Pew Research Center ‐ Journalism and Media. Retrieved from https://www.journalism.org/2019/04/23/the-role-of-social-media-in-news/.
Nataraj,, L., Mohammed,, T. M., Manjunath,, B. S., Chandrasekaran,, S., Flenner,, A., Bappy,, J. H., & Roy‐Chowdhury,, A. K. (2019). Detecting GAN generated fake images using co‐occurrence matrices. arXiv preprint arXiv:1903.06836.
Nguyen,, N. P., Yan,, G., Thai,, M. T., & Eidenbenz,, S. (2012). Containment of misinformation spread in online social networks. In Proceedings of the 4th Annual ACM Web Science Conference (pp. 213–222).
Odena,, A., Dumoulin,, V., & Olah,, C. (2016). Deconvolution and checkerboard artifacts. Distill, 1(10), e3.
Pamungkas,, E. W., Basile,, V., & Patti,, V. (2019). Stance classification for rumour analysis in Twitter: Exploiting affective information and conversation structure. arXiv preprint arXiv:1901.01911.
Pariser,, E. (2011). The filter bubble: How the new personalized web is changing what we read and how we think. London: Penguin.
Parkinson,, H. J. (2016). Click and elect: How fake news helped Donald Trump win a real election. The Guardian. Retrieved from https://goo.gl/DJiWNd
Parth,, M. N., Bengali,, S.. (2018, May 30). Rumors of child‐kidnapping gangs and other WhatsApp hoaxes are getting people killed in India. Los Angeles Times.
Patrick, J. McDonnell,, C. S. (2018, September 21). When fake news kills: Lynchings in Mexico are linked to viral child‐kidnap rumors. Los Angeles Times.
Pennycook,, G., & Rand,, D. G. (2019a, January 19). Why do people fall for fake news? The New York Times. Retrieved from https://www.nytimes.com/2019/01/19/opinion/sunday/fake-news.html.
Pennycook,, G., & Rand,, D. G. (2019b). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition, 188, 39–50.
Pham,, C. V., Phu,, Q. V., Hoang,, H. X., Pei,, J., & Thai,, M. T. (2019). Minimum budget for misinformation blocking in online social networks. Journal of Combinatorial Optimization, 38(4), 1101–1127.
Pratiwi,, I. Y. R., Asmara,, R. A., & Rahutomo,, F. (2017). Study of hoax news detection using naïve bayes classifier in Indonesian language. In 2017 11th International Conference on Information %26 Communication Technology and System (ICTS). IEEE. Retrieved from https://doi.org/10.1109%2Ficts.2017.8265649.
Qian,, F., Gong,, C., Sharma,, K., & Liu,, Y. (2018). Neural user response generator: Fake news detection with collective user intelligence. In Proceedings of the Twenty‐Seventh International Joint Conference on Artificial Intelligence. pp. 3834–3840.
Radford,, A., Narasimhan,, K., Salimans,, T., & Sutskever,, I. (2018). Improving language understanding by generative pre‐training.
Radford,, A., Wu,, J., Child,, R., Luan,, D., Amodei,, D., & Sutskever,, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Ratkiewicz,, J., Conover,, M., Meiss,, M., Gonçalves,, B., Patil,, S., Flammini,, A., & Menczer,, F. (2011b). Truthy: Mapping the spread of astroturf in microblog streams. In World Wide Web Companion (pp. 249–252). ACM.
Ratkiewicz,, J., Conover,, M., Meiss,, M. R., Gonçalves,, B., Flammini,, A., & Menczer,, F. (2011a). Detecting and tracking political abuse in social media. ICWSM, 11, 297–304.
Rosnow,, R. L. (1991). Inside rumor: A personal journey. American Psychologist, 46(5), 484–496.
Rosnow,, R. L., & Fine,, G. A. (1976). Rumor and gossip: The social psychology of hearsay. Amsterdam: Elsevier.
Salem,, F. K. A., Al Feel,, R., Elbassuoni,, S., Jaber,, M., & Farah,, M. (2019). FA‐KES: A fake news dataset around the Syrian war. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 13, pp. 573–582).
Santoso,, I., Yohansen,, I., Nealson,, Warnars,, H. L. H. S., & Hashimoto,, K. (2017). Early investigation of proposed hoax detection for decreasing hoax in social media. In 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). IEEE. Retrieved from https://doi.org/10.1109%2Fcyberneticscom.2017.8311705
Scheufele,, D. A., & Krause,, N. M. (2019). Science audiences, misinformation, and fake news. Proceedings of the National Academy of Sciences, 116(16), 7662–7669.
Shao,, C., Ciampaglia,, G. L., Varol,, O., Flammini,, A., & Menczer,, F. (2017). The spread of fake news by social bots. arXiv preprint arXiv:1707.07592, 96, 104. ArXiv e‐prints.
Sharma,, K., Qian,, F., Jiang,, H., Ruchansky,, N., Zhang,, M., & Liu,, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM Transactions on Intelligent Systems and Technology (TIST), 10(3), 1–42.
Shearer,, E., & Matsa,, K. E. (2018). News use across social media platforms 2018. Pew Research Center ‐ Journalism and Media. Retrieved from https://www.journalism.org/2018/09/10/news-use-across-social-media-platforms-2018/.
Shi,, B., & Weninger,, T. (2016a). Discriminative predicate path mining for fact checking in knowledge graphs. Knowledge‐Based Systems, 104, 123–133.
Shi,, B., & Weninger,, T. (2016b). Fact checking in heterogeneous information networks. In Proceedings of the 25th International Conference Companion on World Wide Web (pp. 101–102).
Shu,, K., Bernard,, H. R., & Liu,, H. (2018). Studying fake news via network analysis: Detection and mitigation. In Lecture notes in social networks (pp. 43–65). Cham: Springer International Publishing Retrieved from https://doi.org/10.1007%2F978-3-319-94105-9_3
Shu,, K., & Liu,, H. (2019). Detecting fake news on social media. Synthesis Lectures on Data Mining and Knowledge Discovery, 11(3), 1–129.
Shu,, K., Mahudeswaran,, D., Wang,, S., Lee,, D., & Liu,, H. (2018). FakeNewsNet: A Data Repository with News Content, Social Context and Dynamic Information for Studying Fake News on Social Media. arXiv preprint arXiv:1809.01286.
Shu,, K., Sliva,, A., Wang,, S., Tang,, J., & Liu,, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter, 19(1), 22–36.
Shu,, K., Zhou,, X., Wang,, S., Zafarani,, R., & Liu,, H. (2019). The role of user profiles for fake news detection. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 436–439).
Starbird,, K. (2017). Examining the alternative media ecosystem through the production of alternative narratives of mass shooting events on twitter. In Eleventh International AAAI Conference on Web and Social Media.
Sunstein,, C. R., & Vermeule,, A. (2009). Conspiracy theories: Causes and cures. Journal of Political Philosophy, 17(2), 202–227.
Swire,, B., Ecker,, U. K. H., & Lewandowsky,, S. (2017). The role of familiarity in correcting inaccurate information. Journal of Experimental Psychology‐Learning Memory and Cognition, 43(12), 1948–1961.
Tacchini,, E., Ballarin,, G., Della Vedova,, M. L., Moret,, S., & de Alfaro,, L.. (2017). Some like it hoax: Automated fake news detection in social networks. arXiv preprint arXiv:1704.07506.
Tandoc,, E. C., Jr. (2019). The facts of fake news: A research review. Sociology Compass, 13(9), e12724.
Tariq,, S., Lee,, S., Kim,, H., Shin,, Y., & Woo,, S. S. (2018). Detecting both machine and human created fake face images in the wild. In Proceedings of the Second International Workshop on Multimedia Privacy and Security (pp. 81–87).
Taylor,, A. (2016). Before “fake news,” there was soviet “disinformation”. The Washington Post. Retrieved from https://www.washingtonpost.com/news/worldviews/wp/2016/11/26/before-fake-news-there-was-soviet-disinformation/
The Trust Project(2017). Retrieved from https://thetrustproject.org/.
Timberg,, C., & Dwoskin,, E. (2018, July). Twitter is sweeping out fake accounts like never before, Putting user growth at risk. Washington Post. Retrieved from https://www.washingtonpost.com/technology/2018/07/06/twitter-is-sweeping-out-fake-accounts-like-never-before-putting-user-growth-risk/
Timsit,, A. (2019, February 12). In the age of fake news, here`s how schools are teaching kids to think like fact‐checkers. Quartz. Retrieved from https://qz.com/1533747/in-the-age-of-fake-news-heres-how-schools-are-teaching-kids-to-think-like-fact-checkers/
Tong,, A., Du,, D.‐Z., & Wu,, W. (2018). On misinformation containment in online social networks. In S. Bengio,, H. Wallach,, H. Larochelle,, K. Grauman,, N. Cesa‐Bianchi,, & R. Garnett, (Eds.), Advances in neural information processing systems 31 (pp. 341–351). Red Hook, NY: Curran Associates Inc Retrieved from http://papers.nips.cc/paper/7317-on-misinformation-containment-in-online-social-networks.pdf
Tschiatschek,, S., Singla,, A., Gomez Rodriguez,, M., Merchant,, A., & Krause,, A. (2018). Fake news detection in social networks via crowd signals. In Companion Proceedings of the web Conference 2018, International World Wide Web Conferences Steering Committee. pp. 517–524.
Tugend,, A. (2020). These students are learning about fake news and how to spot it. The New York Times. Retrieved from https://www.nytimes.com/2020/02/20/education/learning/news-literacy-2016-election.html
van der Tempel,, J., & Alcock,, J. E. (2015). Relationships between conspiracy mentality hyperactive agency detection, and schizotypy: Supernatural forces at work? Personality and Individual Differences, 82, 136–141.
Van Duyn,, E., & Collier,, J. (2019). Priming and fake news: The effects of elite discourse on evaluations of news media. Mass Communication and Society, 22(1), 29–48.
Varol,, O., Ferrara,, E., Davis,, C. A., Menczer,, F., & Flammini,, A. (2017). Online human‐bot interactions: Detection, estimation, and characterization. In ICWSM. pp. 280–289.
Vedova,, M. L. D., Tacchini,, E., Moret,, S., Ballarin,, G., DiPierro,, M., & de Alfaro,, L. (2018). Automatic Online Fake News Detection Combining Content and Social Signals. In 2018 22nd Conference of Open Innovations Association (FRUCT). IEEE. Retrieved from https://doi.org/10.23919%2Ffruct.2018.8468301.
Vo,, N., & Lee,, K. (2018). The rise of guardians: Fact‐checking url recommendation to combat fake news. In The 41st International ACM SIGIR Conference on Research %26 Development in Information Retrieval (pp. 275–284). ACM.
Vosoughi,, S., Roy,, D., & Aral,, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151.
Vukovć,, M., Pripužić,, K., & Belani,, H. (2009). An intelligent automatic hoax detection system. In Knowledge‐based and intelligent information and engineering systems (pp. 318–325). Berlin/Heidelberg: Springer Retrieved from https://doi.org/10.1007%2F978-3-642-04595-0_39
Waddington,, K. (2012). Gossip and organizations. London: Routledge.
Wang,, G., Mohanlal,, M., Wilson,, C., Wang,, X., Metzger,, M., Zheng,, H., & Zhao,, B. Y. (2013). Social turing tests: Crowdsourcing sybil detection. arXiv preprint arXiv:1205.3856. Internet Society.
Wang,, W. Y. (2017). Liar, liar pants on fire: A new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648.
Wang,, Y., Ma,, F., Jin,, Z., Yuan,, Y., Xun,, G., Jha,, K., … Gao,, J. (2018). EANN: Event adversarial neural networks for multi‐modal fake news detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 849–857.
Wu,, K., Yang,, S., & Zhu,, K. Q. (2015). False rumors detection on sina weibo by propagation structures. In 2015 IEEE 31st International Conference on Data Engineering. pp. 651–662.
Wu,, L., Morstatter,, F., Carley,, K. M., & Liu,, H. (2019). Misinformation in social media. ACM SIGKDD Explorations Newsletter, 21(2), 80–90 Retrieved from https://doi.org/10.1145%2F3373464.3373475
Xie,, Y., Yu,, F., Achan,, K., Panigrahy,, R., Hulten,, G., & Osipkov,, I. (2008). Spamming botnets: Signatures and characteristics. ACM SIGCOMM Computer Communication Review, 38(4), 171–182.
Yang,, S., Shu,, K., Wang,, S., Gu,, R., Wu,, F., & Liu,, H. (2019). Unsupervised fake news detection on social media: A generative approach. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 5644–5651 Retrieved from https://doi.org/10.1609%2Faaai.v33i01.33015644
Yang,, X., Li,, Y., & Lyu,, S. (2019). Exposing deep fakes using inconsistent head poses. In ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 8261–8265.
Yang,, Y., Zheng,, L., Zhang,, J., Cui,, Q., Li,, Z., & Yu,, P. S. (2018). TI‐CNN: Convolutional neural networks for fake news detection. arXiv preprint arXiv:1806.00749.
Yin,, X., Han,, J., & Philip,, S. Y. (2008). Truth discovery with multiple conflicting information providers on the web. IEEE Transactions on Knowledge and Data Engineering, 20(6), 796–808.
Zafarani,, R., Abbasi,, M. A., & Liu,, H. (2014). Information diffusion in social media. In Social media mining (pp. 179–214). Cambridge, MA: Cambridge University Press Retrieved from https://doi.org/10.1017%2Fcbo9781139088510.008
Zellers,, R., Holtzman,, A., Rashkin,, H., Bisk,, Y., Farhadi,, A., Roesner,, F., & Choi,, Y. (2019). Defending against neural fake news. In H. Wallach,, H. Larochelle,, A. Beygelzimer,, F. d`Alché‐Buc,, E. Fox,, & R. Garnett, (Eds.), Advances in neural information processing systems (pp. 9051–9062). Red Hook, NY: Curran Associates Inc.
Zhang,, C. M., & Paxson,, V. (2011). Detecting and analyzing automated activity on twitter. In N. Spring, & G. Riley, (Eds.), Passive and active measurement (PAM 2011), LNCS 6579 (pp. 102–111). Berlin: Springer.
Zhang,, D. Y., Wang,, D., & Zhang,, Y. (2017). Constraint‐aware dynamic truth discovery in big data social media sensing. In 2017 IEEE International Conference on Big Data (Big Data). pp. 57–66.
Zhang,, X., Karaman,, S., & Chang,, S.‐F. (2019). Detecting and simulating artifacts in gan fake images. arXiv preprint arXiv:1907.06515.
Zhu,, J.‐Y., Park,, T., Isola,, P., & Efros,, A. A. (2017). Unpaired image‐to‐image translation using cycle‐consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision. pp. 2223–2232.
Zubiaga,, A. (2018). Learning class‐specific word representations for early detection of hoaxes in social media. arXiv preprint arXiv:1801.07311.
Zubiaga,, A., Liakata,, M., Procter,, R., Hoi,, G. W. S., & Tolmie,, P. (2016). Analysing how people orient to and spread rumours in social media by looking at conversational threads. PLoS One, 11(3), e0150989.