Aggarwal,, C. C.. 2007. On randomization, public information and the curse of dimensionality. IEEE 23rd International Conference on Data Engineering; Istanbul, Turkey, pp. 136–145.
Aggarwal,, G., Panigrahy,, R., Feder,, T., Thomas,, D., Kenthapadi,, K., Khuller,, S., & Zhu,, A. (2010). Achieving anonymity via clustering. ACM Transactions on Algorithms (TALG), 6, 49.
Agrawal,, D., & Aggarwal,, C. C.. 2001. On the design and quantification of privacy preserving data mining algorithms. Proceedings of the Twentieth ACM SIGMOD‐SIGACT‐SIGART Symposium on Principles of Database Systems; pp. 247–255.
Agrawal,, R., & Srikant,, R. (2000). Privacy‐preserving data mining. ACM SIGMOD Record, 29, 439–450.
Bansal,, G., & Gefen,, D. (2010). The impact of personal dispositions on information sensitivity, privacy concern and trust in disclosing health information online. Decision Support Systems, 49, 138–150.
Bayardo,, R. J., & Agrawal,, R.. 2005. Data privacy through optimal k‐anonymization. 21st IEEE International Conference on Data Engineering; Tokoyo, Japan, pp. 217–228.
Chamikara,, M. A. P., Bertók,, P., Liu,, D., Camtepe,, S., & Khalil,, I. (2019). An efficient and scalable privacy preserving algorithm for big data and data streams. Computers %26 Security, 87, 101570.
Chen,, C. P., & Zhang,, C. Y. (2014). Data‐intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314–347.
Chen,, K., & Liu,, L. 2005. Privacy preserving data classification with rotation perturbation. 5th IEEE International Conference on Data Mining. Houston, TX, p. 4.
Dalenius,, T., & Reiss,, S. P. (1982). Data‐swapping: A technique for disclosure control. Journal of Statistical Planning and Inference, 6, 73–85.
Demirkan,, H., & Delen,, D. (2013). Leveraging the capabilities of service‐oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems, 55, 412–421.
Digital Insights. 2020. Available from http://www.mckinsey.com/insights/business_technology/
Duan,, Y., & Canny,, J. (2014). Practical distributed privacy‐preserving data analysis at large scale. In Large‐scale data analytics (pp. 219–252). New York, NY: Springer.
Dwork,, C. (2011). Differential privacy. In Encyclopedia of cryptography and security (pp. 338–340). New York Dordrecht Heidelberg London: Springer.
Dwork,, C., & Nissim,, K.. 2004. Privacy‐preserving datamining on vertically partitioned databases. Annual International Cryptology Conference; Santa Barbara, CA, pp. 528–544.
Evfimievski,, A. (2002). Randomization in privacy preserving data mining. ACM Sigkdd Explorations Newsletter, 4, 43–48.
Explore IBM Software and Solutions. n.d.. Available from http://www-01.ibm.com/software/data/bigdata/industry-travel.html
Fienberg,, S. E., & McIntyre,, J. 2004. Data swapping: Variations on a theme by dalenius and reiss. International Workshop on Privacy in Statistical Databases. Barcelona, Spain, pp. 14–29.
Fung,, B. C., Wang,, K., & Yu,, P. S.. 2005. Top‐down specialization for information and privacy preservation. 21st International Conference on Data Engineering. Tokoyo, Japan, pp. 205–216.
Gambs,, S., Kégl,, B., & Aïmeur,, E. (2007). Privacy‐preserving boosting. Data Mining and Knowledge Discovery, 14, 131–170.
Gedik,, B., & Liu,, L. (2004). A customizable k‐anonymity model for protecting location privacy. Atlanta, Georgia: Georgia Institute of Technology.
Gilburd,, B., Schuster,, A., & Wolff,, R.. 2004. K‐TTP: A new privacy model for large‐scale distributed environments. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Seattle, Washington, pp. 563–568.
Han,, Z., Wu,, J., Huang,, C., Huang,, Q., & Zhao,, M. (2020). A review on sentiment discovery and analysis of educational big‐data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10, 1–22.
Hao,, M., Li,, H., Xu,, G., Liu,, S., & Yang,, H. 2019. Towards efficient and privacy‐preserving federated deep learning. ICC 2019–2019 IEEE International Conference on Communications; Shanghai, China, pp. 1–6.
Healthcare`s Digital Future. 2014. Available from https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/healthcares-digital-future
Huang,, X., & Du,, X.. 2014. Achieving big data privacy via hybrid cloud. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS); Toronto, Ontario, Canada, pp. 512–517.
Huang,, Z., Du,, W., & Chen,, B.. 2005. Deriving private information from randomized data. Proceedings of the ACM SIGMOD International Conference on Management of Data. Baltimore Maryland, pp. 37–48.
Inan,, A., Kaya,, S. V., Saygın,, Y., Savaş,, E., Hintoğlu,, A. A., & Levi,, A. (2007). Privacy preserving clustering on horizontally partitioned data. Data %26 Knowledge Engineering, 63, 646–666.
Iyengar,, V. S.. 2002. Transforming data to satisfy privacy constraints. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Edmonton Alberta Canada, pp. 279–288.
Jagannathan,, G., & Wright,, R. N.. 2005. Privacy‐preserving distributed k‐means clustering over arbitrarily partitioned data. Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining; Chicago Illinois, pp. 593–599.
Jiang,, W., & Clifton,, C. 2005. Privacy‐preserving distributed k‐anonymity. IFIP Annual Conference on Data and Applications Security and Privacy. Storrs, CT, pp. 166–177.
Kantarcioglu,, M., & Clifton,, C. (2004). Privacy‐preserving distributed mining of association rules on horizontally partitioned data. IEEE Transactions on Knowledge %26 Data Engineering, 16(9), 1026–1037.
Kantarcıoglu,, M., Vaidya,, J., & Clifton,, C. 2003. Privacy preserving naive bayes classifier for horizontally partitioned data. IEEE ICDM Workshop on Privacy Preserving Data Mining; Melbourne, Florida, pp. 3–9.
Kargupta,, H., Datta,, S., Wang,, Q., & Sivakumar,, K. (2003). On the privacy preserving properties of random data perturbation techniques. ICDM, 3, 99–106.
Kim,, J., & Winkler,, W. (2003). Multiplicative noise for masking continuous data. Statistics, 1, 1–18.
Lakshmi,, N. M., & Rani,, K. S. (2012). Privacy preserving association rule mining in vertically partitioned databases. International Journal of Computer Applications, 39, 29–35.
LeFevre,, K., DeWitt,, D. J., & Ramakrishnan,, R.. 2005. Incognito: Efficient full‐domain k‐anonymity. Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore Maryland, pp. 49–60.
LeFevre,, K., DeWitt,, D. J., & Ramakrishnan,, R.. 2006. Mondrian multidimensional k‐anonymity. Proceedings of IEEE International Conference on Data Engineering; Atlanta, GA, pp. 25–25.
LeFevre,, K., DeWitt,, D. J., & Ramakrishnan,, R. (2008). Workload‐aware anonymization techniques for large‐scale datasets. ACM Transactions on Database Systems (TODS), 33, 17.
Li,, N., Li,, T., & Venkatasubramanian,, S.. 2007. t‐closeness: Privacy beyond k‐anonymity and l‐diversity. 2007 IEEE 23rd International Conference on Data Engineering; Istanbul, Turkey, pp. 106–115.
Li,, Y. (2014). The impact of disposition to privacy, website reputation and website familiarity on information privacy concerns. Decision Support Systems, 57, 343–354.
Lindell,, Y. (2005). Secure multiparty computation for privacy preserving data mining. In Encyclopedia of data warehousing and mining (pp. 1005–1009). England: IGI Global.
Liu,, K., Kargupta,, H., & Ryan,, J. (2005). Random projection‐based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data Engineering, 18, 92–106.
Liu,, L., Wang,, J., & Zhang,, J.. 2008. Wavelet‐based data perturbation for simultaneous privacy‐preserving and statistics‐preserving. 2008 IEEE International Conference on Data Mining Workshops; Pisa, Italy, pp. 27–35.
Lu,, R., Zhu,, H., Liu,, X., Liu,, J. K., & Shao,, J. (2014). Toward efficient and privacy‐preserving computing in big data era. IEEE Network, 28, 46–50.
Machanavajjhala,, A., Gehrke,, J., Kifer,, D., & Venkitasubramaniam,, M.. 2006. l‐diversity: Privacy beyond k‐anonymity. 22nd International Conference on Data Engineering (ICDE`06). Atlanta, GA, pp. 24–24.
Magkos,, E., Maragoudakis,, M., Chrissikopoulos,, V., & Gritzalis,, S. (2009). Accurate and large‐scale privacy‐preserving data mining using the election paradigm. Data %26 Knowledge Engineering, 68, 1224–1236.
Manyika,, J. Big data: The next frontier for innovation, competition, and productivity. 2011. Available from http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation.
McGuire,, A. L., & Gibbs,, R. A. (2006). No longer de‐identified. Science, 312, 370–371.
Md,, I. P., Lau,, R. Y., Md,, A. K. A., Md,, S. H., Md,, K. H., & Karmaker,, B. K. (2020). Healthcare informatics and analytics in big data. Expert Systems with Applications, 152, 113388.
Narayanan,, A., & Shmatikov,, V. Robust de‐anonymization of large sparse datasets: a decade later, 2019.
OECD Health Statistics 2020. Available from http://www.oecd.org/els/health-systems/health-data.htm
Oliveira,, S., & Zaiane,, O. Data perturbation by rotation for privacy‐preserving clustering, 2004.
Polat,, H., & Du,, W.. 2003. Privacy‐preserving collaborative filtering using randomized perturbation techniques. 3rd IEEE International Conference on Data Mining; Melbourne, pp. 625–628.
Polat,, H., & Du,, W.. 2005. Privacy‐preserving top‐n recommendation on horizontally partitioned data. The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI`05). Compiegne, France, pp. 725–731.
Pramanik,, M. I., Lau,, R. Y., Yue,, W. T., Ye,, Y., & Li,, C. (2017). Big data analytics for security and criminal investigations. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7, e1208.
Rebollo‐Monedero,, D., Forne,, J., & Domingo‐Ferrer,, J. (2009). From t‐closeness‐like privacy to postrandomization via information theory. IEEE Transactions on Knowledge and Data Engineering, 22, 1623–1636.
Sarathy,, R., & Muralidhar,, K. (2006). Secure and useful data sharing. Decision Support Systems, 42, 204–220.
Torra,, V., & Navarro‐Arribas,, G. (2014). Data privacy. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4, 269–280.
Vaidya,, J., & Clifton,, C.. 2003. Privacy‐preserving k‐means clustering over vertically partitioned data. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Washington, D.C., pp. 206–215.
Vaidya,, J., & Clifton,, C. 2005. Privacy‐preserving decision trees over vertically partitioned data. IFIP Annual Conference on Data and Applications Security and Privacy; Storrs, CT, pp. 139–152.
Verykios,, V. S., Bertino,, E., Fovino,, I. N., Provenza,, L. P., Saygin,, Y., & Theodoridis,, Y. (2004). State‐of‐the‐art in privacy preserving data mining. ACM SIGMOD Record, 33, 50–57.
Verykios,, V. S., & Christen,, P. (2013). Privacy‐preserving record linkage. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3, 321–332.
Virginia Beach Economic Development. n.d.. Available from www.yesvirginiabeach.com/business-sectors/pages/advanced-manufacturing.aspx
Wang,, J., Li,, H., Guo,, F., Zhang,, W., & Cui,, Y.. 2019. D2D big data privacy‐preserving framework based on (a, k)‐anonymity model. Mathematical Problems in Engineering.
Winkler,, W., 2002. Using simulated annealing for k‐anonymity. Research Report 2002‐07, US Census Bureau Statistical Research Division.
Wong,, R. C. W., Li,, J., Fu,, A. W. C., & Wang,, K.. 2006. (α, k)‐anonymity: an enhanced k‐anonymity model for privacy preserving data publishing. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Philadelphia PA, pp. 754–759.
Wu,, X., Zhu,, X., Wu,, G. Q., & Ding,, W. (2013). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26, 97–107.
Xiao,, X., & Tao,, Y., 2007. M‐invariance: Towards privacy preserving re‐publication of dynamic datasets. Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. Beijing China, pp. 689–700.
Xu,, S., & Lai,, S.. 2007. Fast Fourier transform based data perturbation method for privacy protection. 2007 IEEE Intelligence and Security Informatics; New Brunswick, New Jersey, pp. 221–224.
Xu,, S., & Yung,, M.. 2004. K‐anonymous secret handshakes with reusable credentials. Proceedings of the 11th ACM Conference on Computer and Communications Security; Washington DC, pp. 158–167.
Xu,, S., Zhang,, J., Han,, D., & Wang,, J. (2006). Singular value decomposition based data distortion strategy for privacy protection. Knowledge and Information Systems, 10, 383–397.
Yakut,, I., & Polat,, H. (2010). Privacy‐preserving SVD‐based collaborative filtering on partitioned data. International Journal of Information Technology %26 Decision Making, 9, 473–502.
Yang,, Y., Zheng,, X., Guo,, W., Liu,, X., & Chang,, V. (2018). Privacy‐preserving fusion of IoT and big data for e‐health. Future Generation Computer Systems, 86, 1437–1455.
Yang,, Y., Zheng,, X., Guo,, W., Liu,, X., & Chang,, V. (2019). Privacy‐preserving smart IoT‐based healthcare big data storage and self‐adaptive access control system. Information Sciences, 479, 567–592.
Yu,, H., Jiang,, X., & Vaidya,, J.. 2006. Privacy‐preserving SVM using nonlinear kernels on horizontally partitioned data. Proceedings of the 2006 ACM Symposium on Applied Computing; pp. 603–610.
Zhang,, X., Liu,, C., Nepal,, S., Yang,, C., Dou,, W., & Chen,, J. (2013a). SaC‐FRAPP: A scalable and cost‐effective framework for privacy preservation over big data on cloud. Concurrency and Computation: Practice and Experience, 25, 2561–2576.
Zhang,, X., Liu,, C., Nepal,, S., Yang,, C., Dou,, W., & Chen,, J.. 2013b. Combining top‐down and bottom‐up: Scalable sub‐tree anonymization over big data using MapReduce on cloud. 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications; Melbourne, Australia, pp. 501–508.
Zhang,, X., Yang,, C., Nepal,, S., Liu,, C., Dou,, W., & Chen,, J.. 2013. A MapReduce based approach of scalable multidimensional anonymization for big data privacy preservation on cloud. 2013 International Conference on Cloud and Green Computing; Karlsruhe, Germany, pp. 105–112.
Zhao,, Y., Tarus,, S. K., Yang,, L. T., Sun,, J., Ge,, Y., & Wang,, J. (2020). Privacy‐preserving clustering for big data in cyber‐physical‐social systems: Survey and perspectives. Information Sciences, 515, 132–155.
Zhu,, D., Li,, X. B., & Wu,, S. (2009). Identity disclosure protection: A data reconstruction approach for privacy‐preserving data mining. Decision Support Systems, 48, 133–140.
Zhu,, Y., & Liu,, L.. 2004. Optimal randomization for privacy preserving data mining. Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Seattle, Washington, pp. 761–766.