Amirkhah,, R., Farazmand,, A., Gupta,, S. K., Ahmadi,, H., Wolkenhauer,, O., & Schmitz,, U. (2015). Naïve Bayes classifier predicts functional microRNA target interactions in colorectal cancer. Molecular Biosystems, 11(8), 2126–2134. https://doi.org/10.1039/c5mb00245a
Boughorbel,, S., Al‐Ali,, R., & Elkum,, N. (2016). Model comparison for breast cancer prognosis based on clinical data. PLoS One, 11(1), e0146413. https://doi.org/10.1371/journal.pone.0146413
Bray,, F., Ferlay,, J., Soerjomataram,, I., Siegel,, R. L., Torre,, L. A., & Jemal,, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
Chan,, L. W. C., Chan,, T., Cheng,, L. F., & Mak,, W. S. (2010). Machine learning of patient similarity: A case study on predicting survival in cancer patient after locoregional chemotherapy.
Chaudhary,, K., Poirion,, O. B., Lu,, L., & Garmire,, L. X. (2018). Deep learning‐based multi‐omics integration robustly predicts survival in liver cancer. Clinical Cancer Research, 24(6), 1248–1259. https://doi.org/10.1158/1078-0432.CCR-17-0853
Church,, K. W. (2017). Word2Vec. Natural Language Engineering, 23(1), 155–162. https://doi.org/10.1017/S1351324916000334
Devika,, R., Avilala,, S. V., & Subramaniyaswamy,, V. (2019). Comparative study of classifier for chronic kidney disease prediction using naive Bayes, KNN and random forest. Paper presented at the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC).
Forner,, A., Reig,, M., & Bruix,, J. (2018). Hepatocellular carcinoma. The Lancet, 391(10127), 1301–1314. https://doi.org/10.1016/S0140-6736(18)30010-2
Friedman,, N., Geiger,, D., & Goldszmidt,, M. (1997). Bayesian network classifiers. Machine Learning, 29(2), 131–163. https://doi.org/10.1023/A:1007465528199
Halazun,, K. J., Hardy,, M. A., Rana,, A. A., Woodland Iv,, D. C., Luyten,, E. J., Mahadev,, S., … Emond,, J. C. (2009). Negative impact of neutrophil–lymphocyte ratio on outcome after liver transplantation for hepatocellular carcinoma. Annals of Surgery, 250(1), 141–151. https://doi.org/10.1097/SLA.0b013e3181a77e59
Hong,, G., Suh,, K.‐S., Suh,, S.‐W., Yoo,, T., Kim,, H., Park,, M.‐S., … Lee,, K.‐W. (2016). Alpha‐fetoprotein and (18)F‐FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation. Journal of Hepatology, 64(4), 852.
Ji,, F., Liang,, Y., Fu,, S.‐J., Guo,, Z.‐Y., Shu,, M., Shen,, S.‐L., … Hua,, Y.‐P. (2016). A novel and accurate predictor of survival for patients with hepatocellular carcinoma after surgical resection: The neutrophil to lymphocyte ratio (NLR) combined with the aspartate aminotransferase/platelet count ratio index (APRI). BMC Cancer, 16(1), 137. https://doi.org/10.1186/s12885-016-2189-1
Kumar,, A., & Sarkar,, B. K. (2018). A hybrid predictive model integrating C4.5 and decision table classifiers for medical data sets. Journal of Information Technology Research (JITR), 11(2), 150–167.
Lakshmi,, K., Nagesh,, Y., & Krishna,, M. V. (2014). Performance comparison of three data mining techniques for predicting kidney dialysis survivability. International Journal of Advances in Engineering %26 Technology, 7(1), 242.
Liu,, J., Xue,, Y., Ren,, K., Song,, J., Windmill,, C., & Merritt,, P. (2019). High‐performance time‐series quantitative retrieval from satellite images on a gpu cluster. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(8), 2810–2821.
Manzanarez‐Ozuna,, E., Flores,, D.‐L., Gutiérrez‐López,, E., Cervantes,, D., & Juárez,, P. (2018). Model based on GA and DNN for prediction of mRNA‐Smad7 expression regulated by miRNAs in breast cancer. Theoretical Biology and Medical Modelling, 15(1), 24–12. https://doi.org/10.1186/s12976-018-0095-8
Mikolov,, T., Chen,, K., Corrado,, G., & Dean,, J. (2013). Efficient estimation of word representations in vector space. Computer Science.
Qin,, Z., Wang,, A. T., Zhang,, C., & Zhang,, S. (2013). Cost‐sensitive classification with k‐nearest neighbors.
Roweis,, S. T., & Saul,, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326. https://doi.org/10.1126/science.290.5500.2323
Saul,, L. K., & Rowels,, S. T. (2004). Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4(2), 119–155. https://doi.org/10.1162/153244304322972667
Spelt,, L., Nilsson,, J., Andersson,, R., & Andersson,, B. (2013). Artificial neural networks – A method for prediction of survival following liver resection for colorectal cancer metastases. European Journal of Surgical Oncology, 39(6), 648–654. https://doi.org/10.1016/j.ejso.2013.02.024
Tang,, C., Liu,, X., Li,, M., Wang,, P., Chen,, J., Wang,, L., & Li,, W. (2018a). Robust unsupervised feature selection via dual self‐representation and manifold regularization. Knowledge‐Based Systems, 145, 109–120.
Tang,, C., Zhu,, X., Liu,, X., Li,, M., Wang,, P., Zhang,, C., & Wang,, L. (2018b). Learning a joint affinity graph for multiview subspace clustering. IEEE Transactions on Multimedia, 21(7), 1724–1736.
Tseng,, W.‐T., Chiang,, W.‐F., Liu,, S.‐Y., Roan,, J., & Lin,, C.‐N. (2015). The application of data mining techniques to oral cancer prognosis. Journal of Medical Systems, 39(5), 1–7. https://doi.org/10.1007/s10916-015-0241-3
Turkki,, R., Byckhov,, D., Lundin,, M., Isola,, J., Nordling,, S., Kovanen,, P. E., … Lundin,, J. (2019). Breast cancer outcome prediction with tumour tissue images and machine learning. Breast Cancer Research and Treatment, 177(1), 41–52.
Wang,, M., Wang,, L., Ye,, Z., & Yang,, J. (2019). Ant lion optimizer for texture classification: A moving convolutional mask. IEEE Access, 7, 61697–61705.
Zhang,, S., Li,, X., Zong,, M., Zhu,, X., & Cheng,, D. (2017). Learning k for kNN Classification. ACM Transactions on Intelligent Systems and Technology (TIST), 8(3), 1–19. https://doi.org/10.1145/2990508
Zhang,, S., Li,, X., Zong,, M., Zhu,, X., & Wang,, R. (2018). Efficient kNN classification with different numbers of nearest neighbors. IEEE Transactions on Neural Networks and Learning Systems, 29(5), 1774–1785. https://doi.org/10.1109/TNNLS.2017.2673241
Zhang,, Y., Liu,, G., Liu,, A., Zhang,, Y., Li,, Z., Zhang,, X., & Li,, Q. (2020). Personalized geographical influence modeling for POI recommendation. IEEE Intelligent Systems, 35(5), 18–27.