Salzberg, S.Locating protein coding regions in human DNA using a decision tree algorithm.J Comput Biol1995,2:473–485.
Gupta, R,Wikramasinghe, P,Bhattacharyya, A,Perez, FA,Pal, S,Davuluri, RV.Annotation of gene promoters by integrative data‐mining of ChIP‐seq Pol‐II enrichment data.BMC Bioinformatics2010,11 suppl 1:S65.
Wong, C,Li, Y,Lee, C,Huang, CH.Ensemble learning algorithms for classification of mtDNA into haplogroups.Brief Bioinform (Epub ahead of print; March 4, 2010).
Ben‐Dor, A,Bruhn, L,Friedman, N,Nachman, I,Schummer, M,Yakhini, Z.Tissue classification with gene expression profiles.J Comput Biol2000,7:559–583.
Amaratunga, D,Cabrera, J,Lee, YS.Enriched random forests.Bioinformatics2008,24:2010–2014.
Clare, A,King, RD.Predicting gene function in Saccharomyces cerevisiae.Bioinformatics2003,19 suppl 2:ii42–49.
McLaughlin, WA,Berman, HM.Statistical models for discerning protein structures containing the DNA‐binding helix‐turn‐helix motif.J Mol Biol2003,330:43–55.
Shen, YQ,Burger, G.‘Unite and conquer’: enhanced prediction of protein subcellular localization by integrating multiple specialized tools.BMC Bioinformatics2007,8:420.
Jung, J,Ryu, T,Hwang, Y,Lee, E,Lee, D.Prediction of extracellular matrix proteins based on distinctive sequence and domain characteristics.J Comput Biol2010,17:97–105.
Lin, N,Wu, B,Jansen, R,Gerstein, M,Zhao, H.Information assessment on predicting protein–protein interactions.BMC Bioinformatics2004,5:154.
Mohamed, TP,Carbonell, JG,Ganapathiraju, MK.Active learning for human protein–protein interaction prediction.BMC Bioinformatics2010,11 suppl 1:S57.
Young, SS,Hawkins, DM.Analysis of a 2(9) full factorial chemical library.J Med Chem1995,38:2784–2788.
Feng, J,Lurati, L,Ouyang, H,Robinson, T,Wang, Y,Yuan, S,Young, SS.Predictive toxicology: benchmarking molecular descriptors and statistical methods.J Chem Inf Comput Sci2003,43:1463–1470.
Mitchell, TM. Machine Learning. New York: McGraw Hill Higher Education;1997.
Kothari, R,Dong, M.Decision trees for classification: a review and some new results. In:Pal, SK,Pla, A, eds.Pattern Recognition from Classical to Modern Approaches. Singapore: World Scientific Publishing Company;2002169–186.
Siroky, DS.Navigating random forests and related advances in algorithmic modeling.Stat Surv2009,3:147–163.
Blower, PE,Cross, KP.Decision tree methods in pharmaceutical research.Curr Top Med Chem2006,6:31–39.
de Ville,B.Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner. Cary, NC: SAS Publishing;2006.
Quinlan, JR.Induction of decision trees.Mach Learn1986,1:81–106.
Quinlan, JR.C4.5: Programs for Machine Learning: Morgan Kaufmann, San Mateo, CA1992.
Breiman, L,Friedman, F,Stone, C,Olshen, R.Classification and Regression Trees.New York: Chapman and Hall; San Mateo, CA: Morgan Kaufmann Publishers;1984,368.
Shih, Y‐S.Families of splitting criteria for classification trees.Stat Comput1999,9:309–315.
Shih, Y‐S.Selecting the best categorical split for classification trees.Stat Probab Lett2001,54:341–345.
Zhang, H,Ye, Y.A tree‐based method for modeling a multivariate ordinal response.Stat Interface2008,1:169–178.
Pang, H,Lin, A,Holford, M,Enerson, BE,Lu, B,Lawton, MP,Floyd, E,Zhao, H.Pathway analysis using random forests classification and regression.Bioinformatics2006,22:2028–2036.
Wang, LY,Comaniciu, D,Fasulo, D.Exploiting interactions among polymorphisms contributing to complex disease traits with boosted generative modeling.J Comput Biol2006,13:1673–1684.
Eller, CD,Regelson, M,Merriman, B,Nelson, S,Horvath, S,Marahrens, Y.Repetitive sequence environment distinguishes housekeeping genes.Gene2007,390:153–165.
Jiang, P,Wu, H,Wang, W,Ma, W,Sun, X,Lu, Z.MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features.Nucleic Acids Res2007,35:W339–344.
Breiman, L.Random Forests.Mach Learn2001,45:5–32.
Genuer, R,Poggi, J‐M,Tuleau, C. Random Forests: some methodological insights.2008.
Chen, X,Liu, CT,Zhang, M,Zhang, H.A forest‐based approach to identifying gene and gene–gene interactions.Proc Natl Acad Sci USA2007,104:19199–19203.
Zhang, H,Yu, C‐Y,Singer, B.Cell and tumor classification using gene expression data: construction of forests.Proc Natl Acad Sci USA2003,100:4168–4172.
Breiman, L,Cutler, A. Random Forests. 5.1 ed.2004.
Strobl, C,Boulesteix, AL,Zeileis, A,Hothorn, T.Bias in random forest variable importance measures: illustrations, sources and a solution.BMC Bioinformatics2007,8:25.
Wang, M,Chen, X,Zhang, H.Maximal conditional chi‐square importance in random forests.Bioinformatics2010,26:831–837.
Strobl, C,Boulesteix, AL,Kneib, T,Augustin, T,Zeileis, A.Conditional variable importance for random forests.BMC Bioinformatics2008,9:307.
Nicodemus, KK,Malley, JD.Predictor correlation impacts machine learning algorithms: implications for genomic studies.Bioinformatics2009,25:1884–1890.
Meng, YA,Yu, Y,Cupples, LA,Farrer, LA,Lunetta, KL.Performance of random forest when SNPs are in linkage disequilibrium.BMC Bioinformatics2009,10:78.
Zhang, H,Wang, M.Search for the smallest random forest.Stat Interface2009,2:381.
van de Vijver, MJ,He, YD,van`t Veer, LJ,Dai, H,Hart, AA,Voskuil, DW,Schreiber, GJ,Peterse, JL,Roberts, C,Marton, MJ, et al.A gene‐expression signature as a predictor of survival in breast cancer.N Engl J Med2002,347:1999–2009.
Davuluri, RV,Grosse, I,Zhang, MQ.Computational identification of promoters and first exons in the human genome.Nat Genet2001,29:412–417.
Stark, A,Kheradpour, P,Parts, L,Brennecke, J,Hodges, E,Hannon, GJ,Kellis, M.Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes.Genome Res2007,17:1865–1879.
Gromiha, MM,Yabuki, Y.Functional discrimination of membrane proteins using machine learning techniques.BMC Bioinformatics2008,9:135.
Yang, JY,Yang, MQ,Dunker, AK,Deng, Y,Huang, X.Investigation of transmembrane proteins using a computational approach.BMC Genomics2008,9 suppl 1:S7.
Qi, Y,Bar‐Joseph, Z,Klein‐Seetharaman, J.Evaluation of different biological data and computational classification methods for use in protein interaction prediction.Proteins2006,63:490–500.
Zhang, LV,Wong, SL,King, OD,Roth, FP.Predicting co‐complexed protein pairs using genomic and proteomic data integration.BMC Bioinformatics2004,5:38.
Chen, XW,Liu, M.Prediction of protein–protein interactions using random decision forest framework.Bioinformatics2005,21:4394–4400.
Saito, S,Ohno, K,Sese, J,Sugawara, K,Sakuraba, H.Prediction of the clinical phenotype of Fabry disease based on protein sequential and structural information.J Hum Genet2010.
Torri, A,Beretta, O,Ranghetti, A,Granucci, F,Ricciardi‐Castagnoli, P,Foti, M.Gene expression profiles identify inflammatory signatures in dendritic cells.PLoS One2010,5:e9404.
Chen, HY,Yu, SL,Chen, CH,Chang, GC,Chen, CY,Yuan, A,Cheng, CL,Wang, CH,Terng, HJ,Kao, SF, et al.A five‐gene signature and clinical outcome in non‐small‐cell lung cancer.N Engl J Med2007,356:11–20.
Schierz, AC.Virtual screening of bioassay data.J Cheminform2009,1:21.
Kirchner, M,Timm, W,Fong, P,Wangemann, P,Steen, H.Non‐linear classification for on‐the‐fly fractional mass filtering and targeted precursor fragmentation in mass spectrometry experiments.Bioinformatics2010,26:791–797.
Ramirez, J,Gorriz, JM,Segovia, F,Chaves, R,Salas‐Gonzalez, D,López, M,Alvarez, I,Padilla, P.Computer aided diagnosis system for the Alzheimer`s disease based on partial least squares and random forest SPECT image classification.Neurosci Lett2010,472:99–103.
Soinov, LA,Krestyaninova, MA,Brazma, A.Towards reconstruction of gene networks from expression data by supervised learning.Genome Biol2003,4:R6.
Lunetta, KL,Hayward, LB,Segal, J,Van Eerdewegh, P.Screening large‐scale association study data: exploiting interactions using random forests.BMC Genet2004,5:32.
Nicodemus, KK,Malley, JD,Strobl, C,Ziegler, A.The behaviour of random forest permutation‐based variable importance measures under predictor correlation.BMC Bioinformatics2010,11:110.
Wang, M,Zhang, M,Chen, X,Zhang, H.Detecting genes and gene–gene interactions for age‐related macular degeneration with a forest‐based approach.Stat Biopharm Res2009,1:424–430.
Klein, RJ,Zeiss, C,Chew, EY,Tsai, JY,Sackler, RS,Haynes, C,Henning, AK,SanGiovanni, JP,Mane, SM,Mayne, ST, et al.Complement factor H polymorphism in age‐related macular degeneration.Science2005,308:385–389.