Adel`son‐Vel`skii,, G. M., & Landis,, E. M. (1962). An algorithm for organization of information. In Doklady Akademii Nauk Vol. 146(2), pp. 263–266. http://www.mathnet.ru/php/archive.phtml?wshow=paper%26jrnid=dan%26paperid=26964%26option_lang=eng.
Agarwal,, R., Srikant,, R. et al. (1994). Fast Algorithms for Mining Association Rules. San Francisco, CA, USA, Proceedings of the 20th VLDB Conference. pp. 487–499.
Agrawal,, R., Imieliński,, T. & Swami,, A. (1993). Mining Association Rules Between Sets of Items in Large Databases. Washington, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. pp. 207–216.
Aloui,, A., Ayadi,, A. & Grissa‐Touzi,, A. (2014). A Semi‐automatic Method to Fuzzy‐ontology Design by Using Clustering and Formal Concept Analysis. Proceedings of the 6th International Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA`14). pp. 19–25.
Aloui,, A. & Grissa,, A. (2015). A New Approach for Flexible Queries Using Fuzzy Ontologies. Computational Intelligence Applications in Modeling and Control. Springer. pp. 315–342.
Amira,, A., & Amel,, G. T. (2015). An extension of protege for an automatic fuzzy‐ontology building using clustering and fca. International Journal of Computer Science %26 Information Technology, 7, 13–25.
Andrews,, S. (2009). In‐close, a Fast Algorithm for Computing Formal Concepts. International Conference on Conceptual Structures (ICCS), Moscow.
Andrews,, S. (2017). Making use of empty intersections to improve the performance of cbo‐type algorithms. In: Bertet K., Borchmann D., Cellier P., Ferré S. (eds) Formal Concept Analysis. ICFCA 2017. Lecture Notes in Computer Science, vol 10308. Springer, Cham. https://doi.org/10.1007/978-3-319-59271-8_4.
Ayouni,, S., Yahia,, S. B., & Laurent,, A. (2011). Extracting compact and information lossless sets of fuzzy association rules. Fuzzy Sets and Systems, 183, 1–25.
Bastide,, Y., Pasquier,, N., Taouil,, R., Stumme,, G. & Lakhal,, L. (2000). Mining minimal non‐redundant association rules using frequent closed itemsets. In: Lloyd J. et al. (eds) Computational Logic — CL 2000. CL 2000. Lecture Notes in Computer Science, vol 1861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44957-4_65
Belohlavek,, R. (2011). What is a Fuzzy Concept Lattice? II. In: Kuznetsov S.O., Ślęzak D., Hepting D.H., Mirkin B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science, vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_4
Belohlavek,, R., De Baets,, B., Outrata,, J. and Vychodil,, V. (2007). Lindig`s algorithm for concept lattices over graded attributes. In: Torra V., Narukawa Y., Yoshida Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2007. Lecture Notes in Computer Science, vol 4617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73729-2_15
Belohlavek,, R., De Baets,, B., Outrata,, J., & Vychodil,, V. (2010). Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Transactions on Fuzzy Systems, 18, 546–557.
Belohlavek,, R., & Vychodil,, V. (2012). Formal concept analysis and linguistic hedges. International Journal of General Systems, 41, 503–532.
Burdick,, D., Calimlim,, M., Flannick,, J., Gehrke,, J., & Yiu,, T. (2005). Mafia: A maximal frequent itemset algorithm. IEEE Transactions on Knowledge and Data Engineering, 17, 1490–1504.
Carpineto,, C., & Romano,, G. (1996). A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning, 24, 95–122.
Carpineto,, C. & Romano,, G. (1993). An order‐theoretic approach to conceptual clustering. Machine Learning Proceedings 1993, Morgan Kaufmann, San Francisco (CA), pp. 33–40, https://doi.org/10.1016/B978-1-55860-307-3.50011-3
Carpineto,, C., & Romano,, G. (2004). Concept data analysis: Theory and applications, England: John Wiley %26 Sons.
Cole,, R., & Eklund,, P. W. (1999). Scalability in formal concept analysis. Computational Intelligence, 15, 11–27.
Cross,, V. V. & Yi,, W. (2008). Formal concept analysis for ontologies and their annotation files, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong, 2008, pp. 2014–2021, https://doi.org/10.1109/FUZZY.2008.4630646.
Dau,, F., Ducrou,, J. and Eklund,, P. (2008) Concept Similarity and Related Categories in SearchSleuth. In: Eklund P., Haemmeré O. (eds) Conceptual Structures: Knowledge Visualization and Reasoning. ICCS 2008. Lecture Notes in Computer Science, vol 5113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70596-3_18
De Bie,, T. (2011). Maximum entropy models and subjective interestingness: An application to tiles in binary databases. Data Mining and Knowledge Discovery, 23, 407–446.
de Moraes,, N. R., Dias,, S. M., Freitas,, H. C., & Zarate,, L. E. (2016). Parallelization of the next closure algorithm for generating the minimum set of implication rules. Artificial Intelligence Research, 5, 40.
Dicky,, H., Dony,, C., Huchard,, M., & Libourel,, T. (1996). On automatic class insertion with overloading. ACM SIGPLAN Notices, 31, 251–267.
Dong,, Y., Wu,, Y., & Liu,, Z. (2019). Research on two main construction methods of concept lattices. Journal of Shanghai Jiaotong University (Science), 24, 243–253.
Eisenbarth,, T., Koschke,, R. & Simon,, D. (2001). Feature‐driven Program Understanding Using Concept Analysis of Execution Traces, International Conference on Program Comprehension, Toronto, Canada, 2001 pp. 1–10. https://doi.org/10.1109/WPC.2001.921740.
Fayyad,, U., Piatetsky‐Shapiro,, G., & Smyth,, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17, 37.
Fischer,, B. (2000). Specification‐based browsing of software component libraries. Automated Software Engineering, 7, 179–200.
Formica,, A. (2006). Ontology‐based concept similarity in formal concept analysis. Information Sciences, 176, 2624–2641.
Formica,, A. (2012). Semantic web search based on rough sets and fuzzy formal concept analysis. Knowledge‐Based Systems, 26, 40–47.
Galindo,, J. (2005). Fuzzy databases: Modeling, design and implementation: Modeling, design and implementation, USA: Idea Group Publishing.
Ganter,, B. (2010). Two basic algorithms in concept analysis. Formal Concept Analysis. ICFCA 2010. Lecture Notes in Computer Science, 5986, 312–340. Berlin, Heidelberg: Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11928-6_22.
Ganter,, B., Stumme,, G. & Wille,, R. (2002). Formal concept analysis: Methods and applications in computer science. TU Dresden. Available from http://www.aifb.uni‐karlsruhe.de/WBS/gst/FBA03.shtml
Ganter,, B., Stumme,, G., & Wille,, R. (2005). Formal concept analysis: foundations and applications (Vol. 3626), Berlin, Heidelber Springer.
Ganter,, B., & Wille,, R. (1999). Formal concept analysis–Mathematical foundations. Berlin: Springer.
Ganter,, B., & Wille,, R. (2012). Formal concept analysis: Mathematical foundations, Berlin, Heidelberg: Springer Science %26 Business Media.
Geng,, L., & Hamilton,, H. J. (2006). Interestingness measures for data mining: A survey. ACM Computing Surveys (CSUR), 38, 9.
Godin,, R., & Mili,, H. (1993). Building and maintaining analysis‐level class hierarchies using galois lattices. ACM SIGPLAN Notices, 28, 394–410.
Godin,, R., Missaoui,, R., & Alaoui,, H. (1995). Incremental concept formation algorithms based on galois (concept) lattices. Computational Intelligence, 11, 246–267.
Godin,, R., Pichet,, C. & Gecsei,, J. (1989). Design of a browsing interface for information retrieval. In Proceedings of the 12th annual international ACM SIGIR conference on Research and development in information retrieval, USA, 32–39. https://doi.org/10.1145/75334.75339
Gouda,, K., & Zaki,, M. J. (2005). Genmax: An efficient algorithm for mining maximal frequent itemsets. Data Mining and Knowledge Discovery, 11, 223–242.
Guigues,, J.‐L., & Duquenne,, V. (1986). Familles minimales d`implications informatives résultant d`un tableau de données binaires. Mathématiques et Sciences Humaines, 95, 5–18.
Gupta,, A., Bhatnagar,, V. & Kumar,, N. (2010). Mining closed itemsets in data stream using formal concept analysis. In: Bach Pedersen T., Mohania M.K., Tjoa A.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2010. Lecture Notes in Computer Science, vol 6263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15105-7_23
Han,, J., & Kamber,, M. (2006). Data mining: Concepts and techniques, USA: Morgan Kaufinann.
Han,, J., Pei,, J., & Kamber,, M. (2011). Data mining: Concepts and techniques, San Francisco, USA: Elsevier.
Han,, J., Pei,, J., & Yin,, Y. (2000). Mining frequent patterns without candidate generation. In ACM sigmod record (vol. 29, pp. 1–12). ACM.
Han,, X., Liu,, X., Chen,, J., Lai,, G., Gao,, H., & Li,, J. (2019). Efficiently mining frequent itemsets on massive data. IEEE Access, 7, 31409–31421.
Hao,, J., Bouzouane,, A., & Gaboury,, S. (2019). An incremental learning method based on formal concept analysis for pattern recognition in nonstationary sensor‐based smart environments. Pervasive and Mobile Computing, 59, 101045.
Hashem,, T., Karim,, M. R., Samiullah,, M., & Ahmed,, C. F. (2017). An efficient dynamic superset bit‐vector approach for mining frequent closed itemsets and their lattice structure. Expert Systems with Applications, 67, 252–271.
Hébert,, C. & Crémilleux,, B. (2007). A unified view of objective interestingness measures. In: Perner P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2007. Lecture Notes in Computer Science, vol 4571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73499-4_40.
Helm,, L. (2007). Fuzzy association rules: An implementation in R. Vienna University of Economics and Business Administration. (MSc thesis).
Hilderman,, R. J. & Hamilton,, H. J. (2000). Applying Objective Interestingness Measures in Data Mining Systems. In: Zighed D.A., Komorowski J., Żytkow J. (eds) Principles of Data Mining and Knowledge Discovery. PKDD 2000. Lecture Notes in Computer Science, vol 1910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45372-5_47
Hipp,, J., Güntzer,, U., & Nakhaeizadeh,, G. (2000). Algorithms for association rule mining‐ a general survey and comparison. SIGKDD Explorations, 2, 58–64.
Jaroszewicz,, S. & Simovici,, D. A. (2001). A General Measure of Rule Interestingness. In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD `01). Springer‐Verlag, Berlin, Heidelberg, pp. 253–265.
Kang,, X., Li,, D., & Wang,, S. (2012). Research on domain ontology in different granulations based on concept lattice. Knowledge‐Based Systems, 27, 152–161.
Khiat,, S., Belbachir,, H., & Rahal,, S. A. (2014). Maror: Multi‐level abstraction of association rule using ontology and rule schema. International Journal of Information Technology and Computer Science (IJITCS), 6, 24–34.
Klir,, G. J., & Yuan,, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Upper Saddle River: Prentice Hall PTR.
Kourie,, D. G., Obiedkov,, S., Watson,, B. W., & van der Merwe,, D. (2009). An incremental algorithm to construct a lattice of set intersections. Science of Computer Programming, 74, 128–142.
Krajca,, P., Outrata,, J. & Vychodil,, V. (2010). Advances in Algorithms Based on Cbo. CLA. Vol. pp. 672, 325–337.
Krone,, M. & Snelting,, G. (1994). On the inference of configuration structures from source code, Proceedings of 16th International Conference on Software Engineering, Sorrento, Italy, 1994, pp. 49–57, https://doi.org/10.1109/ICSE.1994.296765.
Kumar,, C. A. (2012). Fuzzy clustering‐based formal concept analysis for association rules mining. Applied Artificial Intelligence, 26, 274–301.
Kumar,, C. A., & Srinivas,, S. (2010). Concept lattice reduction using fuzzy k‐means clustering. Expert Systems with Applications, 37, 2696–2704.
Kumar,, C. A., Mouliswaran,, S. C., Amriteya,, P. & Arun,, S. (2015). Fuzzy formal concept analysis approach for information retrieval. In: Ravi V., Panigrahi B., Das S., Suganthan P. (eds) Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO ‐ 2015). Advances in Intelligent Systems and Computing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-27212-2_20
Kuznetsov,, S. (1993). A fast algorithm for computing all intersections of objects in a finite semi‐lattice. Automatic Documentation and Mathematical Linguistics, 27, 11–21.
Kuznetsov,, S. O. (2004). Machine Learning and Formal Concept Analysis. In: Eklund P. (eds) Concept Lattices. ICFCA 2004. Lecture Notes in Computer Science, vol 2961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24651-0_25
Kuznetsov,, S. O., & Obiedkov,, S. A. (2002). Comparing performance of algorithms for generating concept lattices. Journal of Experimental %26 Theoretical Artificial Intelligence, 14, 189–216. https://doi.org/10.1080/09528130210164170
Kuznetsov,, S. O., & Poelmans,, J. (2013). Knowledge representation and processing with formal concept analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3, 200–215.
La,, P.‐T., Le,, B., & Vo,, B. (2014). Incrementally building frequent closed itemset lattice. Expert Systems with Applications, 41, 2703–2712.
Lakhal,, L., & Stumme,, G. (2005). Efficient mining of association rules based on formal concept analysis. Formal Concept Analysis, 3626, 180–195.
Le,, T., & Vo,, B. (2015). An n‐list‐based algorithm for mining frequent closed patterns. Expert Systems with Applications, 42, 6648–6657.
Le,, T., & Vo,, B. (2016). The lattice‐based approaches for mining association rules: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6, 140–151.
Li,, J., Mei,, C., Kumar,, C. A., & Zhang,, X. (2013). On rule acquisition in decision formal contexts. International Journal of Machine Learning and Cybernetics, 4, 721–731.
Li,, J., Mei,, C., & Lv,, Y. (2012). Knowledge reduction in real decision formal contexts. Information Sciences, 189, 191–207.
Li,, J., Mei,, C., Xu,, W., & Qian,, Y. (2015). Concept learning via granular computing: A cognitive viewpoint. Information Sciences, 298, 447–467.
Lin,, J. C.‐W., Gan,, W., Fournier‐Viger,, P., Chao,, H.‐C., & Hong,, T.‐P. (2017). Efficiently mining frequent itemsets with weight and recency constraints. Applied Intelligence, 47, 769–792.
Lindig,, C. & Snelting,, G. (1997). Assessing Modular Structure of Legacy Code Based on Mathematical Concept Analysis. Proceedings of the 19th international conference on Software engineering (ICSE `97). Association for Computing Machinery, New York, NY, USA, pp. 349–359. https://doi.org/10.1145/253228.253354
Lingling,, L., Lei,, Z., Anfu,, Z., & Funa,, Z. (2011). An improved addintent algorithm for building concept lattice, 2nd International Conference on Intelligent Control and Information Processing, IEEE, Harbin, 2011. Vol. 1, pp. 161–165, https://doi.org/10.1109/ICICIP.2011.6008222.
Liu,, B. (2007). Web data mining: Exploring hyperlinks, contents, and usage data. Berlin, Heidelberg: Springer Science %26 Business Media.
Liu,, B. & Wang,, C. (2013) Association Rule Discovery Based on Formal Concept Analysis, Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, Shenyang, pp. 884–887, https://doi.org/10.1109/IMCCC.2013.196.
Liu,, X., Zhai,, K., & Pedrycz,, W. (2012). An improved association rules mining method. Expert Systems with Applications, 39, 1362–1374.
Liu,, Y. & Li,, X. (2017). Application of Formal Concept Analysis in Association Rule Mining, 4th International Conference on Information Science and Control Engineering (ICISCE), IEEE, Changsha, pp. 203–207, https://doi.org/10.1109/ICISCE.2017.52.
Luxenburger,, M. (1991). Implications partielles dans un contexte. Mathématiques et Sciences Humaines, 113, 35–55.
Majidian,, A., Martin,, T. & Cintra,, M. E. (2011). Fuzzy Formal Concept Analysis and Algorithm. Proceedings of the 11th UK Workshop on Computational Intelligence (UKCI), Kilburn, London, Citeseer. pp. 61–67.
Martin,, T. & Majidian,, A. (2011). Beyond the Known Unknowns‐finding Fuzzy Concepts for Creative Knowledge Discovery. World Conference on Soft Computing. San Francisco.
Martin,, T., Shen,, Y. & Majidian,, A. (2010). Soft Concept Hierarchies to Summarise Data Streams and Highlight Anomalous Changes. In: Hüllermeier E., Kruse R., Hoffmann F. (eds) Information Processing and Management of Uncertainty in Knowledge‐Based Systems. Applications. IPMU 2010. Communications in Computer and Information Science, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14058-7_5.
Martin,, T., Zheng,, S. & Majidian,, A. (2009). Fuzzy Taxonomies for Creative Knowledge Discovery. URSW, pp. 81–84.
Medina‐Moreno,, J., Ojeda‐Aciego,, M. & Ruiz‐Calvino,, J. (2013). Concept‐forming Operators on Multilattices. International Conference on Formal Concept Analysis. Springer. pp. 203–215.
Mezni,, H., & Sellami,, M. (2017). Multi‐cloud service composition using formal concept analysis. Journal of Systems and Software, 134, 138–152.
Mi,, Y., Liu,, W., Shi,, Y., & Li,, J. (2020). Semi‐supervised concept learning by concept‐cognitive learning and concept space. IEEE Transactions on Knowledge and Data Engineering, 1, 1–14.
Mi,, Y., Shi,, Y., Li,, J., Liu,, W., & Yan,, M. (2020). Fuzzy‐based concept learning method: exploiting data with fuzzy conceptual clustering. IEEE Transactions on Cybernetics, 1–12. http://dx.doi.org/10.1109/tcyb.2020.2980794.
Muangprathub,, J. (2014). A novel algorithm for building concept lattice. Applied Mathematical Sciences, 8, 507–515.
Nourine,, L., & Raynaud,, O. (1999). A fast algorithm for building lattices. Information Processing Letters, 71, 199–204.
Obiedkov,, S., & Duquenne,, V. (2007). Attribute‐incremental construction of the canonical implication basis. Annals of Mathematics and Artificial Intelligence, 49, 77–99.
Outrata,, J. (2016). A lattice‐free concept lattice update algorithm. International Journal of General Systems, 45, 211–231.
Outrata,, J., & Vychodil,, V. (2012). Fast algorithm for computing fixpoints of galois connections induced by object‐attribute relational data. Information Sciences, 185, 114–127.
Pasquier,, N., Taouil,, R., Bastide,, Y., Stumme,, G., & Lakhal,, L. (2005). Generating a condensed representation for association rules. Journal of Intelligent Information Systems, 24, 29–60.
Pei,, J., Han,, J. and Mao,, R. (2000) Closet: An Efficient Algorithm for Mining Frequent Closed Itemsets. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. Vol. 4, pp. 21–30.
Phan,, L. P., Phan,, N. Q., Nguyen,, K. M., Huynh,, H. H., Huynh,, H. X., & Guillet,, F. (2017). Interestingnesslab: A Framework for Developing and Using Objective Interestingness Measures. In: Akagi M., Nguyen TT., Vu DT., Phung TN., Huynh VN. (eds) Advances in Information and Communication Technology. ICTA 2016. Advances in Intelligent Systems and Computing, vol 538. Springer, Cham. https://doi.org/10.1007/978-3-319-49073-1_33
Poelmans,, J., Elzinga,, P., Viaene,, S., & Dedene,, G. (2010). Formal Concept Analysis in Knowledge Discovery: A Survey. In: Croitoru M., Ferré S., Lukose D. (eds) Conceptual Structures: From Information to Intelligence. ICCS 2010. Lecture Notes in Computer Science, vol 6208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14197-3_15.
Poelmans,, J., Ignatov,, D. I., Kuznetsov,, S. O., & Dedene,, G. (2013). Formal concept analysis in knowledge processing: A survey on applications. Expert Systems with Applications, 40, 6538–6560.
Pollandt,, S. (1997). Fuzzy‐begriffe: Formale begriffs‐analyse unscharfer daten. Springer, Berlin Heidelberg.
Priss,, U. (2000). Lattice‐based information retrieval. KO Knowledge Organization, 27, 132–142.
Priss,, U. (2006). Formal concept analysis in information science. Arist, 40, 521–543.
Priya,, M., & Ch,, A. K. (2019). A novel method for merging academic social network ontologies using formal concept analysis and hybrid semantic similarity measure. Library Hi Tech, 38, 399–419.
Quan,, T. T., Hui,, S. C. & Cao,, T. H. (2004). A Fuzzy fca‐based Approach to Conceptual Clustering for Automatic Generation of Concept Hierarchy on Uncertainty Data. CLA, pp. 1–12.
Sahraoui,, H. A., Melo,, W., Lounis,, H. and Dumont,, F. (1997). Applying Concept Formation Methods to Object Identification in Procedural Code., Proceedings 12th IEEE International Conference Automated Software Engineering, Incline Village, NV, USA, 1997, pp. 210–218, https://doi.org/10.1109/ASE.1997.632841.
Shemis,, E. E. & Gadallah,, A. M. (2017). Enhanced Algorithms for Fuzzy Formal Concepts Analysis. In: Hassanien A., Shaalan K., Gaber T., Azar A., Tolba M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_75
Shemis,, E. E.‐H., Gadallah,, A. M., & Hefny,, H. A. (2018). A data‐sensitive approach for fuzzy concept extraction. International Journal of Intelligent Engineering and Systems, 11, 194–204.
Shi,, Y., Mi,, Y., Li,, J., & Liu,, W. (2019). Concept‐cognitive learning model for incremental concept learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13. http://dx.doi.org/10.1109/tsmc.2018.2882090.
Siff,, M., & Reps,, T. (1999). Identifying modules via concept analysis. IEEE Transactions on Software Engineering, 25, 749–768.
Siji,, P., & Valarmathi,, M. (2014). Enhanced fuzzy association rule mining techniques for prediction analysis in betathalesemia`s patients. International Journal of Emerging Technology and Advanced Engineering, 4(6), 1–9.
Silberschatz,, A. & Tuzhilin,, A. (1995). On Subjective Measures of Interestingness in Knowledge Discovery. KDD. Vol. 95, pp. 275–281.
Singh,, P. K., Kumar,, C. A., & Gani,, A. (2016). A comprehensive survey on formal concept analysis, its research trends and applications. International Journal of Applied Mathematics and Computer Science, 26, 495–516.
Smith,, D. T. (2014). A formal concept analysis approach to data mining: The quicl algorithm for fast iceberg lattice construction. Computer and Information Science, 7, 10.
Snelting,, G., & Tip,, F. (1998). Reengineering class hierarchies using concept analysis. ACM SIGSOFT Software Engineering Notes, 23, 99–110.
Srikant,, R., & Agrawal,, R. (1997). Mining generalized association rules. Future Generation Computer Systems, 13(2‐3), 161–180. http://dx.doi.org/10.1016/s0167-739x(97)00019-8.
Stumme,, G. (2009). Formal concept analysis. Steffen S.,, & Rudi S., In Handbook on ontologies (pp. 177–199). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92673-3_8.
Stumme,, G., Taouil,, R., Bastide,, Y., Pasquier,, N., & Lakhal,, L. (2002). Computing iceberg concept lattices with titanic. Data %26 Knowledge Engineering, 42, 189–222.
Suba,, S., & Christopher,, T. (2012). A study on milestones of association rule mining algorithms in large databases. International Journal of Computer Applications, 47, 12–19.
Suresh,, R., & Harshni,, S. (2017). Data Mining and Text Mining—A Survey. 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, 2017, pp. 412–420, https://doi.org/10.1109/ICCPEIC.2017.8290404.
Szathmary,, L., Valtchev,, P., Napoli,, A., & Godin,, R. (2008). Constructing Iceberg Lattices from Frequent Closures Using Generators. In: Jean‐Fran JF., Berthold M.R., Horváth T. (eds) Discovery Science. DS 2008. Lecture Notes in Computer Science, vol 5255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88411-8_15
Szathmary,, L., Valtchev,, P., Napoli,, A., Godin,, R., Boc,, A. & Makarenkov,, V. (2011). Fast Mining of Iceberg Lattices: A Modular Approach Using Generators. The Eighth International Conference on Concept Lattices and their Applications ‐ CLA 2011, INRIA Nancy Grand Est ‐ LORIA, Nancy, France.
Szathmary,, L., Valtchev,, P., Napoli,, A., Godin,, R., Boc,, A., & Makarenkov,, V. (2014). A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes. Annals of Mathematics and Artificial Intelligence, 70, 81–105.
Tan,, P.‐N., Kumar,, V. & Srivastava,, J. (2002). Selecting the Right Interestingness Measure for Association Patterns. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA, pp. 32–41. https://doi.org/10.1145/775047.775053.
Tho,, Q. T., Hui,, S. C., Fong,, A. C. M., & Cao,, T. H. (2006). Automatic fuzzy ontology generation for semantic web. IEEE Transactions on Knowledge and Data Engineering, 18, 842–856.
Tran,, A., Truong,, T., & Le,, B. (2014). Simultaneous mining of frequent closed itemsets and their generators: Foundation and algorithm. Engineering Applications of Artificial Intelligence, 36, 64–80.
Valtchev,, P. & Missaoui,, R. (2001). Building Concept (Galois) Lattices from Parts: Generalizing the Incremental Methods. In: Delugach H.S., Stumme G. (eds) Conceptual Structures: Broadening the Base. ICCS 2001. Lecture Notes in Computer Science, vol 2120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44583-8_21
van der Merwe,, D., Obiedkov,, S. & Kourie,, D. (2004). Addintent: A New Incremental Algorithm for Constructing Concept Lattices. International Conference on Formal Concept Analysis. Springer. pp. 372–385.
van der Merwe,, F. J. et al. (2003). Constructing concept lattices and compressed pseudo‐lattices. (PhD Thesis, Msc Dissertation). University of Pretoria.
Vo,, B., Hong,, T.‐P., & Le,, B. (2012). Dbv‐miner: A dynamic bit‐vector approach for fast mining frequent closed itemsets. Expert Systems with Applications, 39, 7196–7206.
Vo,, B., Hong,, T.‐P., & Le,, B. (2013). A lattice‐based approach for mining most generalization association rules. Knowledge‐Based Systems, 45, 20–30.
Vo,, B. & Le,, B. (2009). Mining Traditional Association Rules Using Frequent Itemsets Lattice. 2009 International Conference on Computers %26 Industrial Engineering. IEEE, Troyes, pp. 1401–1406, https://doi.org/10.1109/ICCIE.2009.5223866.
Vo,, B. & Le,, B. (2011a). A frequent closed itemsets lattice‐based approach for mining minimal non‐redundant association rules. arXiv preprint arXiv:1108.5253.
Vo,, B., & Le,, B. (2011b). Mining minimal non‐redundant association rules using frequent itemsets lattice. International Journal of Intelligent Systems Technologies and Applications, 10, 92–106.
Wille,, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts (pp. 445–470). Berlin Heidelberg: Springer Berlin Heidelberg.
Wille,, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hierarchies. In Formal concept analysis (pp. 1–33). Berlin Heidelberg: Springer Berlin Heidelberg.
Wray,, T., Outrata,, J., & Eklund,, P. (2016). Scalable performance of fcbo update algorithm on museum data. In M. Huchard, & S. Kuznetsov, (Eds.), CLA 2016: Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, (pp. 363–374). Aachen, Germany: M. Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen.
Xu,, W., & Li,, W. (2014). Granular computing approach to two‐way learning based on formal concept analysis in fuzzy datasets. IEEE Transactions on Cybernetics, 46, 366–379.
Yang,, K.‐M., Kim,, E.‐H., Hwang,, S.‐H., & Choi,, S.‐H. (2008). Fuzzy concept mining based on formal concept analysis. International Journal of Computers, 2, 279–290.
Yevtushenko,, S., Tane,, J., Kaiser,, T. B., Obiedkov,, S., Hereth,, J. and Reppe,, H. (2006) Conexp‐the concept explorer.
Yun,, U., & Lee,, G. (2016). Incremental mining of weighted maximal frequent itemsets from dynamic databases. Expert Systems with Applications, 54, 304–327.
Zadeh,, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Zaki,, M. J., & Hsiao,, C.‐J. (2005). Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering, 17, 462–478.
Zhang,, J., Liu,, R., Zou,, L., & Zeng,, L. (2019). A new rapid incremental algorithm for constructing concept lattices. Information, 10, 78.
Zhang,, L., Zhang,, H., Shen,, X., & Yin,, L. (2013). An incremental algorithm for removing object from concept lattice. The Journal of Computer Information Systems, 9, 3363–3372.
Zheng,, S., Zhou,, Y. & Martin,, T. (2009). A New Method for Fuzzy Formal Concept Analysis. IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy, 2009, pp. 405–408, https://doi.org/10.1109/WI-IAT.2009.312.
Zhi,, H., & Li,, J. (2018). Influence of dynamical changes on concept lattice and implication rules. International Journal of Machine Learning and Cybernetics, 9, 795–805.
Zou,, C., Deng,, H., Wan,, J., Wang,, Z., & Deng,, P. (2018). Mining and updating association rules based on fuzzy concept lattice. Future Generation Computer Systems, 82, 698–706. http://dx.doi.org/10.1016/j.future.2017.11.018.
Zou,, L., Zhang,, Z., & Long,, J. (2015). A fast incremental algorithm for constructing concept lattices. Expert Systems with Applications, 42, 4474–4481.
Zou,, L., Zhang,, Z., Long,, J., & Zhang,, H. (2015). A fast incremental algorithm for deleting objects from a concept lattice. Knowledge‐Based Systems, 89, 411–419.