Hunt, MA, Bago, AG, Neuwelt, EA. Single dose contrast agent for intraoperative MR imaging of intrinsic brain tumors by using ferumoxtran‐10. AJNR Am J Neuroradiol 2005, 26:1084–1088.
Gneveckow, U, Jordan, A, Scholz, R, Brüss, V, Waldöfner, N, Ricke, J, Feussner, A, Hildebrandt, B, Rau, B, Wust, P. Description and characterization of the novel hyperthermia‐ and thermoablation‐system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 2004, 31:1444–1451.
Jordan, A, Maier‐Hauff, K. Magnetic nanoparticles for intracranial thermotherapy. J Nanosci Nanotechnol 2007, 7:4604–4606.
Lipinski, JK. Some observations on early diagnostic radiology in Canada. Can Med Assoc J 1983, 129: 766–768.
Peters, TM. Image‐guided surgery: from X‐rays to virtual reality. Comput Methods Biomech Biomed Eng 2000, 4:27–57.
Barnett, GH, McKenzie, RL, Ramos, L, Pamer, J. Nonvolumetric sterotaxy‐assisted craniotomy: results in 50 consecutive cases. Stereotact Funct Neurosurg 1993, 61:80–95.
Wirtz, CR, Albert, FK, Schwaderer, M, Heuer, C, Staubert, A, Tronnier, VM, Knauth, M, Kunze, S. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 2000, 22:354–360.
Hill, DL, Maurer, CR Jr, Maciunas, RJ, Barwise, JA, Fitzpatrick, JM, Wang, MY. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 1998, 43:514–526.
Siomin, V, Barnett, G. Intraoperative imaging in glioblastoma resection. Cancer J 2003, 9:113–125.
Cash, DM, Miga, MI, Glasgow, SC, Dawant, BM, Clements, LW, Cao, Z, Galloway, RL, Chapman, WC. Concepts and preliminary data toward the realization of image‐guided liver surgery. J Gastrointest Surg 2007, 11:844–859.
Kalfas, IH, Kormos, DW, Murphy, MA, McKenzie, RL, Barnett, GH, Bell, GR, Steiner, CP, Trimble, MB, Weisenberger, JP. Application of frameless stereotaxy to pedicle screw fixation of the spine. J Neurosurg 1995, 83:641–647.
Rosenberger, RE, Fink, C, Quirbach, S, Attal, R, Tecklenburg, K, Hoser, C. The immediate effect of navigation on implant accuracy in primary mini‐invasive unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2008, 16:1133–1140):(Epub ahead of print; September 20, 2008).
Smith, TL, Stewart, MG, Orlandi, RR, Setzen, M, Lanza, DC. Indications for image‐guided sinus surgery: the current evidence. Am J Rhinol 2007, 21:80–83.
Barnett, GH, McKenzie, RL, Ramos, L, Palmer, J. Nonvolumetric stereotaxy‐assisted craniotomy: results in 50 consecutive cases. Stereotact Funct Neurosurg 1993, 61:80–95.
Barnett, GH, Kormos, D, Steiner, C. Weisenberger: use of a sonic digitizing arm for frameless stereotaxy. Neurosurgery 1993, 33:674–678.
Comeau, RM, Sadikot, AF, Fenster, A, Peters, TM. Intraoperative ultrasound for guidance and tissue shift correction in image‐guided neurosurgery. Med Phys 2000, 27:787–800.
Regelsberger, J, Lohmann, F, Helmke, K, Westphal, M. Ultrasound‐guided surgery of deep seated brain lesions. Eur J Ultrasound 2000, 12:115–121.
LeRoux, PD, Winter, TC, Berger, MS, Mack, LA, Wang, K, Elliott, JP. A comparison between preoperative magnetic resonance and intraoperative ultrasound tumor volumes and margins. J Clin Ultrasound 1994, 22:29–36.
Nabavi, A, Black, PM, Gering, DT, Westin, CF, Mehta, V, Pergolizzi, RS Jr, Ferrant, M, Warfield, SK, Hata, N, Schwartz, RB, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001, 48:787–797.
Schulder, M, Liang, D, Carmel, PW. Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 2001, 94:936–945.
Black, PM, Alexander, E 3rd, Martin, C, Moriarty, T, Nabavi, A, Wong, TZ, Schwartz, RB, Jolesz, F. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 1999, 45:423–431.
Hadani, M, Spiegelman, R, Feldman, Z, Berkenstadt, H, Ram, Z. Novel, compact, intraoperative magnetic resonance imaging‐guided system for conventional neurosurgical operating rooms. Neurosurgery 2001, 48:799–807.
Bohinski, RJ, Kokkino, AK, Warnick, RE, Gaskill‐Shipley, MF, Kormos, DW, Lukin, RR, Tew, JM Jr. Glioma resection in a shared‐resource magnetic resonance operating room after optimal image‐guided frameless stereotactic resection. Neurosurgery 2001, 48:731–742.
Knauth, M, Aras, N, Wirtz, CR, Dorfler, A, Engelhorn, T, Sartor, K. Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol 1999, 20:1547–1553.
Selverstone, B, Sweet, WH, Robinson, CV. The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann Surg 1949, 130:643–651.
Povoski, SP, Neff, RL, Mojzisik, CM, O`Malley, DM, Hinkle, GH, Hall, NC, Murrey, DA Jr, Knopp, MV, Martin, EW Jr. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol 2009, 7:11.
Somasundaram, SK, Chicken, DW, Keshtgar, MR. Detection of the sentinel lymph node in breast cancer. Br Med Bull 2007, 84:117–131.
Mariani, G, Gipponi, M, Moresco, L, Villa, G, Bartolomei, M, Mazzarol, G, Bagnara, MC, Romanini, A, Cafiero, F, Paganelli, G, et al. Radioguided sentinel lymph node biopsy in malignant cutaneous melanoma. J Nucl Med 2002, Jun; 43:811–827.
Georgakoudi, I, Jacobson, BC, Muller, MJ, Sheets, E, Badizadegan, K, Carr‐Locke, DL, Crum, CP, Boone, CW, Dasari, RR, Van Dam, J, et al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 2002, 62:682–687.
Ramanujam, N, Mitchell, MF, Mahadevan‐Jansen, A, Thomsen, SL, Staerkel, G, Malpica, A, Wright, T, Atkinson, N, Richards‐Kortum, R. Cervical precancer detection using a multivariate statistical algorithm based on laser‐induced fluorescence spectra at multiple excitation wavelengths. Photochem Photobiol 1996, 64:720–735.
Croce, AC, Fiorani, S, Locatelli, D, Nano, R, Ceoni, M, Tancioni, F, Giombelli, E, Benericetti, E, Bottiroli, G. Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins. Photochem Photobiol 2003, 77:309–318.
Toms, SA, Konrad, PE, Lin, WC, Weil, RJ. Neuro‐oncological applications of optical spectroscopy. Technol Cancer Res Treat 2006, 5:231–238.
Toms, SA, Lin, WC, Weil, RJ, Johnson, MD, Jansen, ED, Mahadevan‐Jansen, A. Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity. Neurosurgery 2005, 57(4 suppl):382–391.
Lin, WC, Mahadevan‐Jansen, A, Johnson, MD, Weil, RJ, Toms, SA. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery 2005, 57:518–525.
Shinoda, J, Yano, H, Yoshimura, S, Okumura, A, Kaku, Y, Iwama, T, Sakai, N. Fluorescence‐guided resection of glioblastoma multiforme by using high‐dose fluorescein sodium: technical note. J Neurosurg 2003, 99:597–603.
Stummer, W, Novotny, A, Stepp, H, Goetz, C, Bise, K, Reulen, HJ. Fluorescence‐guided resection of glioblastoma multiforme by using 5‐aminolevulinic acid‐induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 2000, 93: 1003–1013.
Newman, EA, Newman, LA. Lymphatic mapping techniques and sentinel lymph node biopsy in breast cancer. Surg Clin North Am 2007, 87:353–364.
Schaar, JA, Mastik, F, Regar, E, den Uil, CA, Gijsen, FJ, Wentzel, JJ, Serruys, PW, van der Stehen, AF. Current diagnostic modalities for vulnerable plaque detection. Curr Pharm Des 2007, 13:995–1001.
Perelman, LT. Optical diagnostic technology based on light scattering spectroscopy for early cancer detection. Expert Rev Med Devices 2006, 3:787–803.
Qian, X, Peng, XH, Ansari, DO, Yin‐Goen, Q, Chen, GZ, Shin, DM, Yang, L, Young, AN, Wang, MD, Nie, S. In vivo tumor targeting and spectroscopic detection with surface‐enhanced Raman nanoparticle tags. Nat Biotechnol 2008, Jan; 26:83–90.
Haisch, C. Quantitative analysis in medicine using photoacoustic tomography. Anal Bioanal Chem 2009, 393:473–479(Epub ahead of print; November 5, 2008).
Cai, W, Chen, X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007, 3:1840–1854.
Bruchez, M Jr, Moronne, M, Gin, P, Weiss, S, Alivisatos, AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281:2013–2016.
Chan, WC, Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281:2016–2018.
Balasubramanian, K, Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1:180–192.
Lacerda, L, Bianco, A, Prato, M, Kostarelos, K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 2006, 58:1460–1470(Epub ahead of print; September 30, 2006).
Hirsch, LR, Gobin, AM, Lowery, AR, Tam, F, Drezek, RA, Halas, NJ, West, JL. Metal nanoshells. Ann Biomed Eng 2006, 34:15–22(Epub ahead of print; Mar 10, 2006).
Thorek, DL, Chen, AK, Czupryna, J, Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 2006, 34:23–38(Epub ahead of print; February 16, 2006).
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005, 5:161–171.
Grodzinski, P, Silver, M, Molnar, LK. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn 2006, 6:307–318.
Michalet, X, Pinaud, FF, Bentolilia, LA, Tsay, JM, Doose, S, Li, JJ, Sundaresan, J, Wu, AM, Gambhir, SS, Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307:538–544.
Gao, X, Yang, L, Petros, JA, Marshall, FF, Simons, JW, Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005, 16:63–72.
Vassallo, P, Matei, C, Heston, WD, McLachlan, SJ, Koutcher, JA, Castellino, RA. AMI‐227‐enhanced MR lymphangography: usefulness for differentiating reactive from tumor‐bearing lymph nodes. Radiology 1994, 193:501–506.
Ballou, B, Lagerholm, BC, Ernst, LA, Bruchez, MP, Waggoner, AS. Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004, 15:79–86.
Choi, HS, Liu, W, Misra, P, Tanaka, E, Zimmer, JP, Itty Ipe, B, Bawendi, MG, Frangioni, JV. Renal clearance of quantum dots. Nat Biotechnol 2007, 25:1165–1170(Epub ahead of print; September 23, 2007).
Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006, 114: 165–172.
Fischer, HC, Liu, L, Pang, KS, Chan, WCW. Pharmacokinetics of nanoscale quantum dots: In vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 2006, 16:1299–1305.
Dubertret, B, Skourides, P, Norris, DJ, Noireaux, V, Brivanlou, AH, Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298:1759–1762.
Rieger, S, Kulkarni, RP, Darcy, D, Fraser, SE, Köster, RW. Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 2005, 234:670–681.
Larson, DR, Zipfel, WR, Williams, RM, Clark, SW, Bruchez, MP, Wise, FW, Webb, WW. Water‐soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300:1434–1436.
Soltesz, EG, Kim, S, Laurence, RG, DeGrand, AM, Parungo, CP, Dor, DM, Cohn, LH, Bawendi, MG, Frangioni, JV, Mihaljevic, T. Intraoperative sentinel lymph node mapping of the lung using near‐infrared fluorescent quantum dots. Ann Thorac Surg 2005, 79:269–277.
Voura, EB, Jaiswal, JK, Mattoussi, H, Simon, SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission‐scanning microscopy. Nat Med 2004, 10:993–998.
Wu, X, Liu, H, Liu, J, Haley, KN, Treadway, JA, Larson, JP, Ge, N, Peale, F, Bruchez, MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003, 21:41–46.
Gao, X, Cui, Y, Levenson, RM, Chung, LW, Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004, 8:969–976.
Cai, W, Chen, K, Li, ZB, Gambhir, SS, Chen, X. Dual‐function probe for PET and near‐infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007, 48:1862–1870(Epub ahead of print; October 17, 2007).
Jackson, H, Kuhhamad, O, Daneshvar, D, Nelms, J, Popescu, A, Vogelbaum, MA, Bruchez, M, Toms, SA. Quantum dots are phagocytized by macrophages and co‐localize with experimental gliomas. Neurosurgery 2007, 60:524–530.
Damishear, H, Nelms, J, Muhammed, O, Jackson, H, Tkach, J, Davros, W, Peterson, T, Vogelbaum, MA, Bruchez, M, Toms, SA. Imaging characteristics of zinc sulfide shell, cadmium telluride core quantum dots`. Nanomedicine 2008, 3:21–29.
King‐Heiden, TC, Wiecinski, PN, Mangham, AN, Metz, KM, Nesbit, D, Pedersen, JA, Hamers, RJ, Heideman, W, Peterson, RE. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ Sci Technol 2009, 43:1605–1611.
Wang, L, Nagesha, DK, Selvarasah, S, Dokmeci, MR, Carrier, RL. Toxicity of CdSe nanoparticles in Caco‐2 cell cultures. J Nanobiotechnol 2008, 6:11.
Kirchner, C, Liedl, T, Kudera, S, Pellegrino, T, Muñoz Javier, A, Gaub, HE, Stölzle, S, Fertig, N, Parak, WJ. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005, 5:331–338.
Neuwelt, EA, Hamilton, BE, Varallyay, CG, Rooney, WR, Edelman, RD, Jacobs, PM, Watnick, SG. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 2009, 75:465–474(Epub ahead of print; October 8, 2008).
Fleige, G, Nolte, C, Synowitz, M, Seeberger, F, Kettenmann, H, Zimmer, C. Magnetic labeling of activated microglia in experimental glioma. Neoplasia 2001, 3:489–499.
Kircher, MF, Mahmood, U, King, RS, Weissleder, R, Josephson, L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003, 63:8122–8125.
Zhang, Y, Kohler, N, Zhang, M. Surface modifications of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002, 23:1553–1561.
Corot, C, Petry, KG, Trivedi, R, Saleh, A, Jonkmanns, C, Le Bas, JF, Blezer, E, Rausch, M, Brochet, B, Foster‐Gareau, P, et al. Macrophage imaging in the central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 2004, 39:619–625.
Dupas, B, Berreur, M, Rohanizadeh, R, Bonnemain, B, Meflah, K, Prada, G. Electron microscopy study of intrahepatic ultrasmall superparamagnetic iron oxide kinetics in the rat. Relationship with magnetic resonance imaging. Biol Cell 1999, 91:195–208.
Yang, L, Mao, H, Cao, Z, Wang, YA, Peng, X, Wang, X, Sajja, HK, Wang, L, Duan, H, Ni, C, et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 2009, 136:1514–25.e2(Epub ahead of print; January 14, 2009).
Hauck, TS, Ghazani, AA, Chan, WC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4:153–159.
Hirsch, LR, Jackson, JB, Lee, A, Halas, NJ, West, JL. A whole blood immunoassay using gold nanoshells. Anal Chem 2003, 75:2377–2381.
Kneipp, J, Kneipp, H, Kneipp, K. SERS—a single‐molecule and nanoscale tool for bioanalytics. Chem Soc Rev 2008, 37:1052–1060(Epub ahead of print; March 20, 2008).
Oh, SJ, Kang, J, Maeng, I, Suh, JS, Huh, YM, Haam, S, Son, JH. Nanoparticle‐enabled terahertz imaging for cancer diagnosis. Opt Expr 2009, 17:3469–3475.
Park, J, Estrada, A, Sharp, K, Sang, K, Schwartz, JA, Smith, DK, Coleman, C, Payne, JD, Korgel, BA, Dunn, AK, et al. Two‐photon‐induced photoluminescence imaging of tumors using near‐infrared excited gold nanoshells. Opt Expr 2008, 16:1590–1599.
Averitt, R, Wescott, S, Halas, NJ. Linear optical properties of gold nanoshells. Opt Soc Am B 1999, 6:1824–1832.
Oldenburg, S, Averitt, RD, Westcott, S, Halas, NJ. Nanoengineering of optical resonances. Chem Phys Lett 1998, 288:243–247.
Oldenburg, SJ, Jackson, JB, Westcott, SL, Halas, NJ. Infrared extinction properties of gold nanoshells. Appl Phys Lett 1999, 75:2897–2899.
Loo, C, Lowery, A, Halas, N, West, J, Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005, 5:709–711.
Loo, C, Lin, A, Hirsch, L, Lee, MH, Barton, J, Halas, N, West, J, Drezek, R. Nanoshell‐enabled photonics‐based imaging and therapy of cancer. Technol Cancer Res Treat 2004, 3:33–40.
Hirsch, LR, Stafford, RJ, Bankson, JA, Sershen, SR, Rivera, B, Price, RE, Hazle, JD, Halas, NJ, West, JL. Nanoshell‐mediated near‐infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003, 100:13549–13554(Epub ahead of print; November 3, 2003).
O`Neal, DP, Hirsch, LR, Halas, NJ, Payne, JD, West, JL. Photo‐thermal tumor ablation in mice using near infrared‐absorbing nanoparticles. Cancer Lett 2004, 209:171–176.
Gobin, AM, Lee, MH, Halas, NJ, James, WD, Drezek, RA, West, JL. Near‐infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007, 7:1929–1934(Epub ahead of print; June 6, 2007).
Keren, S, Zavaleta, C, Cheng, Z, de la Zerda, A, Gheysens, O, Gambhir, SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 2008, 105: 5844–5849.
Wang, Y, Xie, X, Wang, X, Ku, G, Gill, KL, O`Neal, DP, Stoica, G, Wang, LV. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 2004, 4:1689–1692.
Li, ML, Wang, JC, Schwartz, JA, Gill‐Sharp, KL, Stoica, G, Wang, LV. In‐vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 2009, 14:010507.
Song, KH, Kim, C, Cobley, CM, Xia, Y, Wang, LV. Near‐infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 2009, 9:183–188.
Lee, CC, MacKay, JA, Fréchet, JM, Szoka, FC. Designing dendrimers for biological applications. Nat Biotechnol 2005, 23:1517–1526.
Svenson, S, Tomalia, DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 2005, 57:2106–2129(Epub ahead of print; November 21, 2005).
Tomalia, DA, Reyna, LA, Svenson, S. Dendrimers as multi‐purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007, 35:61–67.
Dufès, C, Uchegbu, IF, Schätzlein, AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005, 57:2177–2202(Epub ahead of print; November 28, 2005).
Pan, B, Cui, D, Sheng, Y, Ozkan, C, Gao, F, He, R, Li, Q, Xu, P, Huang, T. Dendrimer‐modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 2007, 67:8156–8163.
Manunta, M, Tan, PH, Sagoo, P, Kashefi, K, George, AJ. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res 2004, 32:2730–2739.
Wada, K, Arima, H, Tsutsumi, T, Chihara, Y, Hattori, K, Hirayama, F, Uekama, K. Improvement of gene delivery mediated by mannosylated dendrimer/alpha‐cyclodextrin conjugates. J Control Release 2005, 104:397–413.
Wu, G, Barth, RF, Yang, W, Kawabata, S, Zhang, L, Green‐Church, K. Targeted delivery of methotrexate to epidermal growth factor receptor‐positive brain tumors by means of cetuximab (IMC‐C225) dendrimer bioconjugates. Mol Cancer Ther 2006, 5:52–59.
Majoros, IJ, Myc, A, Thomas, T, Mehta, CB, Baker, JR Jr. PAMAM dendrimer‐based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 2006, 7:572–579.
Chandrasekar, D, Sistla, R, Ahmad, FJ, Khar, RK, Diwan, PV. The development of folate‐PAMAM dendrimer conjugates for targeted delivery of anti‐arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 2007, 28:504–512(Epub ahead of print; September 22, 2006).
Lai, PS, Lou, PJ, Peng, CL, Pai, CL, Yen, WN, Huang, MY, Young, TH, Shieh, MJ. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 2007, 122:39–46.
Wiener, EC, Brechbiel, MW, Brothers, H, Magin, RL, Gansow, OA, Tomalia, DA, Lauterbur, PC. Dendrimer‐based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 1994, 31:1–8.
Kobayashi, H, Brechbiel, MW. Dendrimer‐based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2003, 2:1–10.
Kobayashi, H, Brechbiel, MW. Nano‐sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 2005, 57:2271–2286(Epub ahead of print; November 10, 2005).
Wiener, EC, Konda, S, Shadron, A, Brechbiel, M, Gansow, O. Targeting dendrimers–chelates to tumors and tumor cells expressing the high‐affinity folate receptor. Invest Radiol 1997, 32:748–754.
Fu, Y, Nitecki, DE, Maltby, D, Simon, GH, Berejnoi, K, Raatschen, HJ, Yeh, BM, Shames, DM, Brasch, RC. Dendritic iodinated contrast agents with PEG‐cores for CT imaging: synthesis and preliminary characterization. Bioconjug Chem 2006, 17:1043–1056.
Xu, H, Regino, CA, Koyama, Y, Hama, Y, Gunn, AJ, Bernardo, M, Kobayashi, H, Choyke, PL, Brechbiel, MW. Preparation and preliminary evaluation of a biotin‐targeted, lectin‐targeted dendrimer‐based probe for dual‐modality magnetic resonance and fluorescence imaging. Bioconjug Chem 2007, 18:1474–1482(Epub ahead of print; August 21, 2007).
Koyama, Y, Talanov, VS, Bernardo, M, Hama, Y, Regino, CA, Brechbiel, MW, Choyke, PL, Kobayashi, H. A dendrimer‐based nanosized contrast agent dual‐labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 2007, 25:866–871.
Kobayashi, H, Koyama, Y, Barrett, T, Hama, Y, Regino, CA, Shin, IS, Jang, BS, Le, N, Paik, CH, Choyke, PL, et al. Multimodal nanoprobes for radionuclide and five‐color near‐infrared optical lymphatic imaging. ACS Nano 2007, 1:258–264.
Wang, HF. Biodistribution of carbon single‐wall carbon nanotubes in mice. J Nanosci Nanotechnol 2004, 4:1019–1024.
Singh, R. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006, 103:3357–3362.
Liu, Z, Cai, W, He, L, Nakayama, N, Chen, K, Sun, X, Chen, X, Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007, 2:47–52(Epub ahead of print; December 17, 2006).
De la Zerda, A, Zavaleta, C, Keren, S, Vaithilingam, S, Bodapati, S, Liu, Z, Levi, J, Smith, BR, Ma, TJ, Oralkan, O, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 2008, 3:557–562(Epub ahead of print; August 17, 2008).
Gregoriadis, G, Neerunjun, T. Homing of liposomes to target cells. Biochem Biophys Res Commun 1975, 65:537–544.
Keren, S, Zavaleta, C, Cheng, Z, de la Zerda, A, Gheysens, O, Gambhir, SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 2008, 105:5844–5849(Epub ahead of print; March 31, 2008).
Gregoriadis, G. Targeting of drugs: implications in medicine. Lancet 1981, 318:241–246.
Gregoriadis, G. The carrier potential of liposomes in biology and medicine. N Engl J Med 1976, 704:110.
Gregoriadis, G. Drug entrapment in liposomes. FEBS Lett 1973, 36:292–296.
Torchilin, VP. Liposomes as delivery agents for medical imaging. Mol Med Today 1996, 2:242–249.
Torchilin, VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005, 4:145–160.
Dams, ET, Oyen, WJ, Boerman, OC, Storm, G, Laverman, P, Kok, PJ, Buijs, WC, Bakker, H, van der Meer, JW, Corstens, FH. 99mTc‐PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 2000, 41:622–630.
Ghaghada, KB, Bockhorst, KH, Mukundan, S Jr, Annapragada, AV, Narayana, PA. High‐resolution vascular imaging of the rat spine using liposomal blood pool MR agent. AJNR Am J Neuroradiol 2007, 28:48–53.
Mulder, WJ, Strijkers, GJ, Habets, JW, Bleeker, EJ, van der Schaft, DW, Storm, G, Koning, GA, Griffioen, AW, Nicolay, K. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 2005, 19:2008–2010(Epub ahead of print; October 4, 2005).
Alkan‐Onyuksel, H, Demos, SM, Lanza, GM, Vonesh, MJ, Klegerman, ME, Kane, BJ, Kuszak, J, McPherson, DD. Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci 1996, 85:486–490.
Demos, SM, Alkan‐Onyuksel, H, Kane, BJ, Ramani, K, Nagaraj, A, Greene, R, Klegerman, M, McPherson, DD. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 1999, 33:867–875.
Hamilton, A, Huang, SL, Warnick, D, Stein, A, Rabbat, M, Madhav, T, Kane, B, Nagaraj, A, Klegerman, M, MacDonald, R, et al. Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes: studies in a new experimental model. Circulation 2002, 105:2772–2778.
Lanza, GM, Wallace, KD, Scott, MJ, Cacheris, WP, Abendschein, DR, Christy, DH, Sharkey, AM, Miller, JG, Gaffney, PJ, Wickline, SA. A novel site‐targeted ultrasonic contrast agent with broad biomedical application. Circulation 1996, 94:3334–3340.
Lanza, GM, Trousil, RL, Wallace, KD, Rose, JH, Hall, CS, Scott, MJ, Miller, JG, Eisenberg, PR, Gaffney, PJ, Wickline, SA. In vitro characterization of a novel, tissue‐targeted ultrasonic contrast system with acoustic microscopy. J Acoust Soc Am 1998, 104: 3665–3672.
Lanza, GM, Wallace, KD, Fischer, SE, Christy, DH, Scott, MJ, Trousil, RL, Cacheris, WP, Miller, JG, Gaffney, PJ, Wickline, SA. High‐frequency ultrasonic detection of thrombi with a targeted contrast system. Ultrasound Med Biol 1997, 23:863–870.
Lanza, G, Lorenz, C, Fischer, S, Scott, M, Cacheris, W, Kaufman, R, Gaffney, P, Wickline, S. Enhanced detection of thrombi with a novel fibrin‐targeted magnetic resonance imaging agent. Acad Radiol 1998, 5(suppl 1):s173–s176.
Flacke, S, Fischer, S, Scott, MJ, Fuhrhop, RJ, Allen, JS, McLean, M, Winter, P, Sicard, GA, Gaffney, PJ, Wickline, SA, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001, 104: 1280–1285.
Winter, PM, Morawski, AM, Caruthers, SD, Fuhrhop, RW, Zhang, H, Williams, TA, Allen, JS, Lacy, EK, Robertson, JD, Lanza, GM, et al. Molecular imaging of angiogenesis in early‐stage atherosclerosis with alpha(v)beta3‐integrin‐targeted nanoparticles. Circulation 2003, 108:2270–2274(Epub ahead of print; October 13, 2003).
Brooks, PC, Montgomery, AMP, Rosenfeld, M, Reisfeld, RA, Hu, T, Klier, G, Cheresh, DA. Integrin αVβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994, 79:1157–1164.
O`Brien, ER, Garvin, MR, Dev, R, Stewart, DK, Hinohara, T, Simpson, JB, Schwartz, SM. Angiogenesis in human coronary atherosclerotic plaque. Am J Pathol 1994, 145:883–894.
Mulder, WJ, Castermans, K, van Beijnum, JR, Oude Egbrink, MG, Chin, PT, Fayad, ZA, Löwik, CW, Kaijzel, EL, Que, I, Storm, G, et al. Molecular imaging of tumor angiogenesis using alphavbeta3‐integrin targeted multimodal quantum dots. Angiogenesis 2009, 12:17–24.
Smith, BR, Cheng, Z, De, A, Koh, AL, Sinclair, R, Gambhir, SS. Real‐time intravital imaging of RGD‐quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 2008, 8:2599–2606.
Lacroix, M, Abi‐Said, D, Fourney, DR, Gokaslan, ZL, Shi, W, DeMonte, F, Lang, FF, McCutcheon, IE, Hassenbusch, SJ, Holland, E, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival`. J Neurosurg 2001, 95:190–198.
McGirt, MJ, Chaichana, KL, Attenello, FJ, Weingart, JD, Than, K, Burger, PC, Olivi, A, Brem, H, Quinoñes‐Hinojosa, A. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low‐grade gliomas. Neurosurgery 2008, 63:700–707.
Smith, JS, Chang, EF, Lamborn, KR, Chang, SM, Prados, MD, Cha, S, Tihan, T, Vandenberg, S, McDermott, MW, Berger, MS. Role of extent of resection in the long‐term outcome of low‐grade hemispheric gliomas. J Clin Oncol 2008, 26:1338–1345.