Starr, C, Evers, CA, Starr, L. Biology: Concepts and Applications. 7th ed. Brooks Cole, 2007.
Einstein, A. Generation and conversion of light with regard to a heuristic point of view. Ann Phys Berlin 1905, 17:132–148.
Lovell, JF, Liu, TW. B, Chen, J, Zheng, G. Activatable photosensitizers for imaging and therapy. Chem Rev 2010, 110:2839–2857.
Finsen, NR. Phototherapy. London: Edward Arnold; 1901.
Szaciłowski, K, Macyk, W, Drzewiecka‐Matuszek, A, Brindell, M, Stochel, G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 2005, 105: 2647–2694.
Ntziachristos, V, Ripoll, J, Weissleder, R. Would near‐infrared fluorescence signals propagate through large human organs for clinical studies? Opt Lett 2002, 27: 333–335.
Ntziachristos, V, Ripoll, J, Wang, LV, Weissleder, R. Looking and listening to light: the evolution of whole‐body photonic imaging. Nat Biotech 2005, 23: 313–320.
Weissleder, R. A clearer vision for in vivo imaging. Nat Biotech 2001, 19:316–317.
Srinivasan, S, Pogue, BW, Jiang, S, Dehghani, H, Kogel, C, Soho, S, Gibson, JJ, Tosteson, TD, Poplack, SP, Paulsen, KD. Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near‐infrared breast tomography. Proc Natl Acad Sci U S A 2003, 100:12349–12354.
Perry, S, Burke, R, Brown, E. Two‐photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 2012, 40:277–291.
Flusberg, BA, Cocker, ED, Piyawattanametha, W, Jung, JC, Cheung, ELM, Schnitzer, MJ. Fiber‐optic fluorescence imaging. Nat Meth 2005, 2:941–950.
Yelin, D, Rizvi, I, White, WM, Motz, JT, Hasan, T, Bouma, BE, Tearney, GJ. Three‐dimensional miniature endoscopy. Nature 2006, 443:765.
Brancaleon, L, Moseley, H. Laser and non‐laser light sources for photodynamic therapy. Lasers Med Sci 2002, 17:173–186.
Bhawalkar, JD, Kumar, ND, Zhao, CF, Prasad, PN. Two‐photon photodynamic therapy. J Clin Laser Med Surg 1997, 15:201–204.
Youssef, PN, Sheibani, N, Albert, DM. Retinal light toxicity. Eye 2011, 25:1–14.
Timko, BP, Dvir, T, Kohane, DS. Remotely triggerable drug delivery systems. Adv Mater 2010, 22: 4925–4943.
Parver, LM, Auker, CR, Fine, BS. Observations on monkey eyes exposed to light from an operating microscope. Ophthalmology 1983, 90:964–972.
Tso, MOM, Woodford, BJ. Effect of photic injury on the retinal tissues. Ophthalmology 1983, 90:952–963.
Reichel, E. Clinical light damage by indirect ophthalmoscopy. N Engl J Med 1994, 330:1320.
Moghimi, SM, Hunter, AC, Murray, JC. Nanomedicine: current status and future prospects. FASEB J 2005, 19: 311–330.
Jain, RK, Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010, 7:653–664.
Wagner, V, Dullaart, A, Bock, AK, Zweck, A. The emerging nanomedicine landscape. Nat Biotechnol 2006, 24:1211–1217.
Langer, R. Drug delivery and targeting. Nature 1998, 392:5–10.
Cai, W, Chen, X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007, 3:1840–1854.
Weldon, C, Tian, B, Kohane, DS. Nanotechnology for surgeons. WIREs Nanomed Nanobiotechnol 2011, 3:223–228.
Farokhzad, OC, Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3:16–20.
Chithrani, BD, Ghazani, AA, Chan, WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006, 6: 662–668.
Adair, BM. Nanoparticle vaccines against respiratory viruses. WIREs Nanomed Nanobiotechnol 2009, 1:405–414.
Kim, PS, Read, SW. Nanotechnology and HIV: potential applications for treatment and prevention. WIREs Nanomed Nanobiotechnol 2010, 2:693–702.
Sheng, W‐Y, Huang, L. Cancer immunotherapy and nanomedicine. Pharm Res 2011, 28:200–214.
Stephan, MT, Moon, JJ, Um, SH, Bershteyn, A, Irvine, DJ. Therapeutic cell engineering with surface‐conjugated synthetic nanoparticles. Nat Med 2010, 16: 1035–1041.
De Temmerman, M‐L, Rejman, J, Demeester, J, Irvine, DJ, Gander, B, De Smedt, SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 2011, 16:569–582.
Hobbs, SK, Monsky, WL, Yuan, F, Roberts, WG, Griffith, L, Torchilin, VP, Jain, RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 1998, 95: 4607–4612.
van Nostrum, CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev 2004, 56:9–16.
Samkoe, KS, Clancy, AA, Karotki, A, Wilson, BC, Cramb, DT. Complete blood vessel occlusion in the chick chorioallantoic membrane using two‐photon excitation photodynamic therapy: implications for treatment of wet age‐related macular degeneration. J Biomed Opt 2007, 12:034025‐1–034025‐14.
Sortino, S. Nanostructured molecular films and nanoparticles with photoactivable functionalities. Photochem Photobiol Sci 2008, 7:911–924.
Rai, P, Mallidi, S, Zheng, X, Rahmanzadeh, R, Mir, Y, Elrington, S, Khurshid, A, Hasan, T. Development and applications of photo‐triggered theranostic agents. Adv Drug Deliv Rev 2010, 62:1094–1124.
Sortino, S. Photoactivated nanomaterials for biomedical release applications. J Mater Chem 2012, 22:301–318.
McCarthy, JR, Perez, JM, Brückner, C, Weissleder, R. Polymeric nanoparticle preparation that eradicates tumors. Nano Lett 2005, 5:2552–2556.
Chatterjee, DK, Fong, LS, Zhang, Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 2008, 60:1627–1637.
Allémann, E, Rousseau, J, Brasseur, N, Kudrevich, SV, Lewis, K, van Lier, JE. Photodynamic therapy of tumours with hexadecafluoro zinc phthalocyanine formulated in PEG‐coated poly(lactic acid) nanoparticles. Int J Cancer 1996, 66:821–824.
Ideta, R, Tasaka, F, Jang, W‐D, Nishiyama, N, Zhang, G‐D, Harada, A, Yanagi, Y, Tamaki, Y, Aida, T, Kataoka, K. Nanotechnology‐based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 2005, 5:2426–2431.
Huang, X, Jain, P, El‐Sayed, I, El‐Sayed, M. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008, 23:217–228.
Link, S, El‐Sayed, MA. Shape and size dependence of radiative, non‐radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 2000, 19:409–453.
Link, S, Burda, C, Nikoobakht, B, El‐Sayed, MA. Laser‐induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 2000, 104:6152–6163.
Dreaden, EC, Alkilany, AM, Huang, X, Murphy, CJ, El‐Sayed, MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012, 41:2740–2779.
Wang, S, Gao, R, Zhou, F, Selke, M. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J Mater Chem 2004, 14: 487–493.
Auzel, F. Upconversion and anti‐stokes processes with f and d ions in solids. Chem Rev 2003, 104:139–174.
Wang, F, Liu, X. Recent advances in the chemistry of lanthanide‐doped upconversion nanocrystals. Chem Soc Rev 2009, 38:976–989.
Jori, G, Spikes, JD. Photothermal sensitizers: possible use in tumor therapy. J Photochem Photobiol B Biol 1990, 6:93–101.
Overgaard, J, Bentzen, SM, Overgaard, J, Gonzalez Gonzalez, D, Hulshof, MCCM, Arcangeli, G, Dahl, O, Mella, O. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet 1995, 345:540–543.
Svaasand, LO, Gomer, CJ, Morinelli, E. On the physical rationale of laser induced hyperthermia. Lasers Med Sci 1990, 5:121–128.
Overgaard, J. The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys 1989, 16:535–549.
Sapareto, SA, Dewey, WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984, 10:787–800.
Rosenberg, C, Puls, R, Hegenscheid, K, Kuehn, J, Bollman, T, Westerholt, A, Weigel, C, Hosten, N. Laser ablation of metastatic lesions of the lung: long‐term outcome. AJR Am J Roentgenol 2009, 192:785–792.
Lindner, U, Weersink, RA, Haider, MA, Gertner, MR, Davidson, SRH, Atri, M, Wilson, BC, Fenster, A, Trachtenberg, J. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol 2009, 182:1371–1377.
Camerin, M, Rello, S, Villanueva, A, Ping, X, Kenney, ME, Rodgers, MAJ, Jori, G. Photothermal sensitisation as a novel therapeutic approach for tumours: studies at the cellular and animal level. Eur J Cancer 2005, 41:1203–1212.
Fiedler, VU, Schwarzmaier, H‐J, Eickmeyer, F, Müller, FP, Schoepp, C, Verreet, PR. Laser‐induced interstitial thermotherapy of liver metastases in an interventional 0.5 Tesla MRI system: technique and first clinical experiences. J Magn Reson Imaging 2001, 13:729–737.
von Maltzahn, G, Park, J‐H, Agrawal, A, Bandaru, NK, Das, SK, Sailor, MJ, Bhatia, SN. Computationally guided photothermal tumor therapy using long‐circulating gold nanorod antennas. Cancer Res 2009, 69: 3892–3900.
Yu, J, Javier, D, Yaseen, MA, Nitin, N, Richards‐Kortum, R, Anvari, B, Wong, MS. Self‐assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody‐coated indocyanine green nanocapsules. J Am Chem Soc 2010, 132:1929–1938.
Richardson, HH, Carlson, MT, Tandler, PJ, Hernandez, P, Govorov, AO. Experimental and theoretical studies of light‐to‐heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 2009, 9:1139–1146.
El‐Sayed, IH, Huang, X, El‐Sayed, MA. Selective laser photo‐thermal therapy of epithelial carcinoma using anti‐EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006, 239:129–135.
Melancon, MP, Lu, W, Yang, Z, Zhang, R, Cheng, Z, Elliot, AM, Stafford, J, Olson, T, Zhang, JZ, Li, C. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 2008, 7:1730–1739.
Dolmans, DEJGJ, Fukumura, D, Jain, RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003, 3: 380–387.
Dougherty, TJ, Gomer, CJ, Jori, G, Kessel, D, Korbelik, M, Moan, J, Peng, Q. Photodynamic therapy. J Natl Cancer Inst 1998, 90:889–905.
Dolmans, DEJGJ, Kadambi, A, Hill, JS, Waters, CA, Robinson, BC, Walker, JP, Fukumura, D, Jain, RK. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res 2002, 62: 2151–2156.
Gollnick, SO, Vaughan, L, Henderson, BW. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res 2002, 62:1604–1608.
Korbelik, M, Dougherty, GJ. Photodynamic therapy‐mediated immune response against subcutaneous mouse tumors. Cancer Res 1999, 59:1941–1946.
Castano, AP, Mroz, P, Wu, MX, Hamblin, MR. Photodynamic therapy plus low‐dose cyclophosphamide generates antitumor immunity in a mouse model. Proc Natl Acad Sci U S A 2008, 105:5495–5500.
MacDonald, IJ, Dougherty, TJ. Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 2001, 5:105–129.
Castano, AP, Mroz, P, Hamblin, MR. Photodynamic therapy and anti‐tumour immunity. Nat Rev Cancer 2006, 6:535–545.
Mitsunaga, M, Ogawa, M, Kosaka, N, Rosenblum, LT, Choyke, PL, Kobayashi, H. Cancer cell‐selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 2011, 17:1685–1691.
Celli, JP, Spring, BQ, Rizvi, I, Evans, CL, Samkoe, KS, Verma, S, Pogue, BW, Hasan, T. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 2010, 110:2795–2838.
Huang, Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 2005, 4:283.
Josefsen, LB, Boyle, RW. Photodynamic therapy and the development of metal‐based photosensitisers. Met Base Drugs 2008, 2008.
O’Connor, AE, Gallagher, WM, Byrne, AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009, 85:1053–1074.
Juarranz, Á, Jaén, P, Sanz‐Rodríguez, F, Cuevas, J, González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 2008, 10:148–154.
Juzeniene, A, Peng, Q, Moan, J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 2007, 6: 1234–1245.
Jori, G, Fabris, C, Soncin, M, Ferro, S, Coppellotti, O, Dei, D, Fantetti, L, Chiti, G, Roneucci, G. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 2006, 38:468–481.
Vrouenraets, MB, Visser, GWM, Snow, GB, van Dongen, G. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 2003, 23:505–522.
Carcenac, M, Dorvillius, M, Garambois, V, Glaussel, F, Larroque, C, Langlois, R, Hynes, NE, van Lier, JE, Pelegrin, A. Internalisation enhances photo‐induced cytotoxicity of monoclonal antibody‐phthalocyanine conjugates. Br J Cancer 2001, 85:1787–1793.
Vrouenraets, MB, Visser, GWM, Stewart, FA, Stigter, M, Oppelaar, H, Postmus, PE, Snow, GB, van Dongen, GAMS. Development of meta‐tetrahydroxyphenylchlorin‐monoclonal antibody conjugates for photoimmunotherapy. Cancer Res 1999, 59:1505–1513.
Grossweiner, LI, Patel, AS, Grossweiner, JB. Type‐I and type‐II mechanisms in the photosensitized lysis of phosphatidylcholine liposomes by hematoporphyrin. Photochem Photobiol 1982, 36:159–167.
Nishiyama, N, Iriyama, A, Jang, W‐D, Miyata, K, Itaka, K, Inoue, Y, Takahashi, H, Yanagi, Y, Tamaki, Y, Koyama, H, et al. Light‐induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater 2005, 4:934–941.
Jang, W‐D, Nishiyama, N, Zhang, G‐D, Harada, A, Jiang, D‐L, Kawauchi, S, Morimoto, Y, Kikuchi, M, Koyama, H, Aida, T, et al. Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with polyethylene glycol to enhance intracellular photodynamic efficacy. Angew Chemie Int Ed 2005, 44:419–423.
Kim, S, Ohulchanskyy, TY, Pudavar, HE, Pandey, RK, Prasad, PN. Organically modified silica nanoparticles co‐encapsulating photosensitizing drug and aggregation‐enhanced two‐photon absorbing fluorescent dye aggregates for two‐photon photodynamic therapy. J Am Chem Soc 2007, 129:2669–2675.
Denk, W, Strickler, J, Webb, W. Two‐photon laser scanning fluorescence microscopy. Science 1990, 248: 73–76.
Helmchen, F, Denk, W. Deep tissue two‐photon microscopy. Nat Meth 2005, 2:932–940.
Starkey, JR, Rebane, AK, Drobizhev, MA, Meng, FQ, Gong, AJ, Elliott, A, McInnerney, K, Spangler, CW. New two‐photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near‐IR laser treatment through the body of the host mouse. Clin Cancer Res 2008, 14:6564–6573.
Zhao, Y, Zheng, Q, Dakin, K, Xu, K, Martinez, ML, Li, W‐H. New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J Am Chem Soc 2004, 126:4653–4663.
Sánchez, EJ, Novotny, L, Xie, XS. Near‐field fluorescence microscopy based on two‐photon excitation with metal tips. Phys Rev Lett 1999, 82:4014–4017.
König, K. Multiphoton microscopy in life sciences. J Microsc 2000, 200:83–104.
Collins, HA, Khurana, M, Moriyama, EH, Mariampillai, A, Dahlstedt, E, Balaz, M, Kuimova, MK, Drobizhev, M, YangVictor, XD, Phillips, D, et al. Blood‐vessel closure using photosensitizers engineered for two‐photon excitation. Nat Photon 2008, 2:420–424.
Ogawa, K, Ohashi, A, Kobuke, Y, Kamada, K, Ohta, K. Strong two‐photon absorption of self‐assembled butadiyne‐linked bisporphyrin. J Am Chem Soc 2003, 125:13356–13357.
Drobizhev, M, Stepanenko, Y, Dzenis, Y, Karotki, A, Rebane, A, Taylor, PN, Anderson, HL. Understanding strong two‐photon absorption in π‐conjugated porphyrin dimers via double‐resonance enhancement in a three‐level model. J Am Chem Soc 2004, 126: 15352–15353.
Drobizhev, M, Stepanenko, Y, Dzenis, Y, Karotki, A, Rebane, A, Taylor, PN, Anderson, HL. Extremely strong near‐IR two‐photon absorption in conjugated porphyrin dimers: quantitative description with three‐essential‐states model. J Phys Chem B 2005, 109: 7223–7236.
Kuimova, MK, Hoffmann, M, Winters, MU, Eng, M, Balaz, M, Clark, IP, Collins, HA, Tavender, SM, Wilson, CJ, Albinsson, B, et al. Determination of the triplet state energies of a series of conjugated porphyrin oligomers. Photochem Photobiol Sci 2007, 6:675–682.
Pawlicki, M, Collins, HA, Denning, RG, Anderson, HL. Two‐photon absorption and the design of two‐photon dyes. Angew Chemie Int Ed 2009, 48:3244–3266.
Patrice, T, Le Bodic, M‐F, Le Bodic, L, Spreux, T, Dabouis, G, Hervouet, L. Neodymium‐Yttrium aluminium garnet laser destruction of nonsensitized and hematoporphyrin derivative‐sensitized tumors. Cancer Res 1983, 43:2876–2879.
Marchesini, R, Melloni, E, Fava, G, Pezzoni, G, Savi, G, Zunino, F, Docchio, F. A study on the possible involvement of nonlinear mechanism of light absorption by HpD with Nd: YAG laser. Lasers Surg Med 1986, 6: 323–327.
Lenz, P. In vivo excitation of photosensitizers by infrared light. Photochem Photobiol 1995, 62: 333–338.
Dayal, S, Burda, C. Semiconductor quantum dots as two‐photon sensitizers. J Am Chem Soc 2008, 130: 2890–2891.
Zoumi, A, Yeh, A, Tromberg, BJ. Imaging cells and extracellular matrix in vivo by using second‐harmonic generation and two‐photon excited fluorescence. Proc Natl Acad Sci U S A 2002, 99:11014–11019.
Vakoc, BJ, Lanning, RM, Tyrrell, JA, Padera, TP, Bartlett, LA, Stylianopoulos, T, Munn, LL, Tearney, GJ, Fukumura, D, Jain, RK, et al. Three‐dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 2009, 15:1219–1223.
Lee, EC, de Boer, JF, Mujat, M, Lim, H, Yun, SH. In vivo optical frequency domain imaging of human retina and choroid. Opt Express 2006, 14:4403–4411.
Vakoc, BJ, Fukumura, D, Jain, RK, Bouma, BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer 2012, 12:363–368.
Weissleder, R, Pittet, MJ. Imaging in the era of molecular oncology. Nature 2008, 452:580–589.
Rosencwaig, A. Photoacoustic spectroscopy of biological materials. Science 1973, 181:657–658.
Wang, LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photon 2009, 3:503–509.
Wang, X, Pang, Y, Ku, G, Xie, X, Stoica, G, Wang, LV. Noninvasive laser‐induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotech 2003, 21:803–806.
Zhang, HF, Maslov, K, Stoica, G, Wang, LV. Functional photoacoustic microscopy for high‐resolution and noninvasive in vivo imaging. Nat Biotech 2006, 24: 848–851.
Li, M‐L, Wang, JC, Schwartz, JA, Gill‐Sharp, KL, Stoica, G, Wang, LV. In‐vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 2009, 14:010507‐1–010507‐3.
Kim, C, Cho, EC, Chen, J, Song, KH, Au, L, Favazza, C, Zhang, Q, Cobley, CM, Gao, F, Xia, Y, et al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 2010, 4:4559–4564.
Lu, W, Melancon, MP, Xiong, C, Huang, Q, Elliott, A, Song, S, Zhang, R, Flores, LG, Gelovani, JG, Wang, LV, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 2011, 71:6116–6121.
Kim, J‐W, Galanzha, EI, Shashkov, EV, Moon, H‐M, Zharov, VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high‐contrast molecular agents. Nat Nanotechnol 2009, 4:688–694.
Melancon, MP, Zhou, M, Li, C. Cancer theranostics with near‐infrared light‐activatable multimodal nanoparticles. Acc Chem Res 2011, 44:947–956.
Pelliccioli, AP, Wirz, J. Photoremovable protecting groups: reaction mechanisms and applications. Photochem Photobiol Sci 2002, 1:441–458.
Cosa, G, Lukeman, M, Scaiano, JC. How drug photodegradation studies led to the promise of new therapies and some fundamental carbanion reaction dynamics along the way. Acc Chem Res 2009, 42: 599–607.
San Miguel, Vn, Bochet, CG, del Campo, An. Wavelength‐selective caged surfaces: how many functional levels are possible? J Am Chem Soc 2011, 133: 5380–5388.
Ellis‐Davies, GCR. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Meth 2007, 4:619–628.
Young, DD, Deiters, A. Photochemical control of biological processes. Org Biomol Chem 2007, 5: 999–1005.
Riggsbee, CW, Deiters, A. Recent advances in the photochemical control of protein function. Trends Biotechnol 2010, 28:468–475.
Yan, B, Boyer, J‐C, Branda, NR, Zhao, Y. Near‐infrared light‐triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 2011, 133:19714–19717.
Yang, Y, Shao, Q, Deng, R, Wang, C, Teng, X, Cheng, K, Cheng, Z, Huang, L, Liu, Z, Liu, X, et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chemie Int Ed 2012, 51:3125–3129.
Carling, C‐J, Nourmohammadian, F, Boyer, J‐C, Branda, NR. Remote‐control photorelease of caged compounds using near‐infrared light and upconverting nanoparticles. Angew Chemie Int Ed 2010, 49: 3782–3785.
Agasti, SS, Chompoosor, A, You, C‐C, Ghosh, P, Kim, CK, Rotello, VM. Photoregulated release of caged anticancer drugs from gold nanoparticles. J Am Chem Soc 2009, 131:5728–5729.
Han, G, You, C‐C, Kim, B‐j, Turingan, RS, Forbes, NS, Martin, CT, Rotello, VM. Light‐regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chemie Int Ed 2006, 45:3165–3169.
Angelos, S, Choi, E, Vögtle, F, De Cola, L, Zink, JI. Photo‐driven expulsion of molecules from mesostructured silica nanoparticles. J Phys Chem C 2007, 111: 6589–6592.
Lu, J, Choi, E, Tamanoi, F, Zink, JI. Light‐activated nanoimpeller‐controlled drug release in cancer cells. Small 2008, 4:421–426.
Vivero‐Escoto, JL, Slowing, II, Wu, C‐W, Lin, VSY. Photoinduced intracellular controlled release drug delivery in human cells by gold‐capped mesoporous silica nanosphere. J Am Chem Soc 2009, 131:3462–3463.
Park, C, Lee, K, Kim, C. Photoresponsive cyclodextrin‐covered nanocontainers and their sol‐gel transition induced by molecular recognition. Angew Chemie Int Ed 2009, 48:1275–1278.
Lin, Q, Huang, Q, Li, C, Bao, C, Liu, Z, Li, F, Zhu, L. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one‐ or two‐photon process. J Am Chem Soc 2010, 132: 10645–10647.
Mal, NK, Fujiwara, M, Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin‐modified mesoporous silica. Nature 2003, 421: 350–353.
Ki Choi, S, Thomas, T, Li, M‐H, Kotlyar, A, Desai, A, Baker, JJR. Light‐controlled release of caged doxorubicin from folate receptor‐targeting PAMAM dendrimer nanoconjugate. Chem Commun 2010, 46: 2632–2634.
Liu, Y‐C, Le Ny, A‐LM, Schmidt, J, Talmon, Y, Chmelka, BF, Lee, CT. Photo‐assisted gene delivery using light‐responsive catanionic vesicles. Langmuir 2009, 25:5713–5724.
Goodwin, AP, Mynar, JL, Ma, Y, Fleming, GR, Fréchet, JMJ. Synthetic micelle sensitive to IR light via a two‐photon process. J Am Chem Soc 2005, 127: 9952–9953.
Chen, C‐J, Liu, G‐Y, Shi, Y‐T, Zhu, CS, Pang, S‐P, Liu, X‐S, Ji, J. Biocompatible micelles based on comb‐like PEG derivates: formation, characterization, and photo‐responsiveness. Macromol Rapid Commun 2011, 32:1077–1081.
Tian, F, Yu, Y, Wang, C, Yang, S. Consecutive morphological transitions in nanoaggregates assembled from amphiphilic random copolymer via water‐driven micellization and light‐triggered dissociation. Macromolecules 2008, 41:3385–3388.
Lim, S‐J, Carling, C‐J, Warford, CC, Hsiao, D, Gates, BD, Branda, NR. Multifunctional photo‐ and thermo‐responsive copolymer nanoparticles. Dyes Pigm 2011, 89:230–235.
Chen, Z, He, Y, Wang, Y, Wang, X. Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo‐modulated self‐assembly. Macromol Rapid Commun 2011, 32:977–982.
Lee, H‐i, Wu, W, Oh, JK, Mueller, L, Sherwood, G, Peteanu, L, Kowalewski, T, Matyjaszewski, K. Light‐induced reversible formation of polymeric micelles. Angew Chemie Int Ed 2007, 46:2453–2457.
Wang, G, Tong, X, Zhao, Y. Preparation of azobenzene‐containing amphiphilic diblock copolymers for light‐responsive micellar aggregates. Macromolecules 2004, 37:8911–8917.
Park, C, Lim, J, Yun, M, Kim, C. Photoinduced release of guest molecules by supramolecular transformation of self‐assembled aggregates derived from dendrons. Angew Chemie Int Ed 2008, 47:2959–2963.
Zhu, Y, Fujiwara, M. Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled‐release nanosystem. Angew Chemie Int Ed 2007, 46:2241–2244.
Jiang, J, Tong, X, Zhao, Y. A new design for light‐breakable polymer micelles. J Am Chem Soc 2005, 127:8290–8291.
Babin, J, Pelletier, M, Lepage, M, Allard, J‐F, Morris, D, Zhao, Y. A new two‐photon‐sensitive block copolymer nanocarrier. Angew Chemie Int Ed 2009, 48: 3329–3332.
Jiang, J, Tong, X, Morris, D, Zhao, Y. Toward photocontrolled release using light‐dissociable block copolymer micelles. Macromolecules 2006, 39:4633–4640.
Kostiainen, MA, Smith, DK, Ikkala, O. Optically triggered release of DNA from multivalent dendrons by degrading and charge‐switching multivalency. Angew Chemie Int Ed 2007, 46:7600–7604.
Menon, S, Thekkayil, R, Varghese, S, Das, S. Photoresponsive soft materials: synthesis and photophysical studies of a stilbene‐based diblock copolymer. J Polym Sci Part A: Polym Chem 2011, 49:5063–5073.
Jiang, J, Qi, B, Lepage, M, Zhao, Y. Polymer micelles stabilization on demand through reversible photo‐cross‐linking. Macromolecules 2007, 40:790–792.
Lendlein, A, Jiang, H, Junger, O, Langer, R. Light‐induced shape‐memory polymers. Nature 2005, 434: 879–882.
Shi, D, Matsusaki, M, Kaneko, T, Akashi, M. Photo‐cross‐linking and cleavage induced reversible size change of bio‐based nanoparticles. Macromolecules 2008, 41:8167–8172.
Fomina, N, McFearin, C, Sermsakdi, M, Edigin, O, Almutairi, A. UV and near‐IR triggered release from polymeric nanoparticles. J Am Chem Soc 2010, 132: 9540–9542.
Dvir, T, Banghart, MR, Timko, BP, Langer, R, Kohane, DS. Photo‐targeted nanoparticles. Nano Lett 2010, 10:250–254.
Tong, R, Hemmati, HD, Langer, R, Kohane, DS. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 2012, 134: 8848–8855.
Denk, W. Two‐photon scanning photochemical microscopy: mapping ligand‐gated ion channel distributions. Proc Natl Acad Sci U S A 1994, 91: 6629–6633.
Tamai, N, Miyasaka, H. Ultrafast dynamics of photochromic systems. Chem Rev 2000, 100:1875–1890;
Minkin, VI. Photo‐, thermo‐, solvato‐, and electrochromic spiroheterocyclic compounds. Chem Rev 2004, 104:2751–2776.
Marriott, G, Mao, S, Sakata, T, Ran, J, Jackson, DK, Petchprayoon, C, Gomez, TJ, Warp, E, Tulyathan, O, Aaron, HL, et al. Optical lock‐in detection imaging microscopy for contrast‐enhanced imaging in living cells. Proc Natl Acad Sci USA 2008, 105: 17789–17794.
Zhu, MQ, Zhang, GF, Li, C, Aldred, MP, Chang, E, Drezek, RA, Li, ADQ. Reversible two‐photon photoswitching and two‐photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. J Am Chem Soc 2011, 133:365–372.
Finkelmann, H, Nishikawa, E, Pereira, GG, Warner, M. A new opto‐mechanical effect in solids. Phys Rev Lett 2001, 87:015501.
Yu, Y, Nakano, M, Ikeda, T. Photomechanics: directed bending of a polymer film by light. Nature 2003, 425: 145.
Kondo, M, Yu, Y, Ikeda, T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid‐crystalline elastomers? Angew Chemie Int Ed 2006, 45:1378–1382.
Yamada, M, Kondo, M, Mamiya, J‐i, Yu, Y, Kinoshita, M, Barrett, CJ, Ikeda, T. Photomobile polymer materials: towards light‐driven plastic motors. Angew Chemie Int Ed 2008, 47:4986–4988.
Camacho‐Lopez, M, Finkelmann, H, Palffy‐Muhoray, P, Shelley, M. Fast liquid‐crystal elastomer swims into the dark. Nat Mater 2004, 3:307–310.
van Oosten, CL, Bastiaansen, CWM, Broer, DJ. Printed artificial cilia from liquid‐crystal network actuators modularly driven by light. Nat Mater 2009, 8: 677–682.
Sumaru, K, Ohi, K, Takagi, T, Kanamori, T, Shinbo, T. Photoresponsive properties of poly(N‐isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 2006, 22:4353–4356.
Daniel, M‐C, Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum‐size‐related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2003, 104:293–346.
Rosi, NL, Mirkin, CA. Nanostructures in biodiagnostics. Chem Rev 2005, 105:1547–1562.
Stewart, ME, Anderton, CR, Thompson, LB, Maria, J, Gray, SK, Rogers, JA, Nuzzo, RG. Nanostructured plasmonic sensors. Chem Rev 2008, 108:494–521.
Taton, TA, Mirkin, CA, Letsinger, RL. Scanometric DNA array detection with nanoparticle probes. Science 2000, 289:1757–1760.
Lyon, LA, Musick, MD, Natan, MJ. Colloidal Au‐enhanced surface plasmon resonance immunosensing. Anal Chem 1998, 70:5177–5183.
Liu, X, Dai, Q, Austin, L, Coutts, J, Knowles, G, Zou, J, Chen, H, Huo, Q. A one‐step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 2008, 130:2780–2782.
Gupta, S, Huda, S, Kilpatrick, PK, Velev, OD. Characterization and optimization of gold nanoparticle‐based silver‐enhanced immunoassays. Anal Chem 2007, 79:3810–3820.
Phillips, RL, Miranda, OR, You, C‐C, Rotello, VM, Bunz, UHF. Rapid and efficient identification of bacteria using gold‐nanoparticle–poly(para‐phenyleneethynylene) constructs. Angew Chemie Int Ed 2008, 47:2590–2594.
Baptista, P, Pereira, E, Eaton, P, Doria, G, Miranda, A, Gomes, I, Quaresma, P, Franco, R. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 2008, 391:943–950.
Aaron, J, de la Rosa, E, Travis, K, Harrison, N, Burt, J, José‐Yacamán, M, Sokolov, K. Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules. Opt Express 2008, 16:2153–2167.
Gobin, AM, Lee, MH, Halas, NJ, James, WD, Drezek, RA, West, JL. Near‐infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007, 7:1929–1934.
Park, J, Estrada, A, Sharp, K, Sang, K, Schwartz, JA, Smith, DK, Coleman, C, Payne, JD, Korgel, BA, Dunn, AK, et al. Two‐photon‐induced photoluminescence imaging of tumors using near‐infrared excited gold nanoshells. Opt Express 2008, 16:1590–1599.
von Maltzahn, G, Centrone, A, Park, J‐H, Ramanathan, R, Sailor, MJ, Hatton, TA, Bhatia, SN. SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating. Adv Mater 2009, 21:3175–3180.
Alkilany, AM, Thompson, LB, Boulos, SP, Sisco, PN, Murphy, CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 2012, 64:190–199.
Oldenburg, SJ, Averitt, RD, Westcott, SL, Halas, NJ. Nanoengineering of optical resonances. Chem Phys Lett 1998, 288:243–247.
Bardhan, R, Lal, S, Joshi, A, Halas, NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 2011, 44:936–946.
Jana, NR, Gearheart, L, Murphy, CJ. Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template. Adv Mater 2001, 13:1389–1393.
Nicewarner‐Peña, SR, Freeman, RG, Reiss, BD, He, L, Peña, DJ, Walton, ID, Cromer, R, Keating, CD, Natan, MJ. Submicrometer metallic barcodes. Science 2001, 294:137–141.
Sun, Y, Xia, Y. Shape‐controlled synthesis of gold and silver nanoparticles. Science 2002, 298:2176–2179.
Xia, Y, Li, W, Cobley, CM, Chen, J, Xia, X, Zhang, Q, Yang, M, Cho, EC, Brown, PK. Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 2011, 44:914–924.
Liang, Z, Susha, A, Caruso, F. Gold nanoparticle‐based core‐shell and hollow spheres and ordered assemblies thereof. Chem Mater 2003, 15:3176–3183.
Kim, F, Connor, S, Song, H, Kuykendall, T, Yang, P. Platonic gold nanocrystals. Angew Chemie Int Ed 2004, 43:3673–3677.
Yavuz, MS, Cheng, Y, Chen, J, Cobley, CM, Zhang, Q, Rycenga, M, Xie, J, Kim, C, Song, KH, Schwartz, AG, et al. Gold nanocages covered by smart polymers for controlled release with near‐infrared light. Nat Mater 2009, 8:935–939.
Krpetić, Ze, Nativo, P, Sée, V, Prior, IA, Brust, M, Volk, M. Inflicting controlled nonthermal damage to subcellular structures by laser‐activated gold nanoparticles. Nano Lett 2010, 10:4549–4554.
Wu, G, Mikhailovsky, A, Khant, HA, Fu, C, Chiu, W, Zasadzinski, JA. Remotely triggered liposome release by near‐infrared light absorption via hollow gold nanoshells. J Am Chem Soc 2008, 130:8175–8177.
Park, J‐H, Gu, L, von Maltzahn, G, Ruoslahti, E, Bhatia, SN, Sailor, MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009, 8:331–336.
von Maltzahn, G, Park, J‐H, Lin, KY, Singh, N, Schwöppe, C, Mesters, R, Berdel, WE, Ruoslahti, E, Sailor, MJ, Bhatia, SN. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 2011, 10:545–552.
Park, J‐H, von Maltzahn, G, Xu, MJ, Fogal, V, Kotamraju, VR, Ruoslahti, E, Bhatia, SN, Sailor, MJ. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci U S A 2010, 107:981–986.
Jang, B, Park, J‐Y, Tung, C‐H, Kim, I‐H, Choi, Y. Gold nanorod‐photosensitizer complex for near‐infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5:1086–1094.
Choi, M‐R, Stanton‐Maxey, KJ, Stanley, JK, Levin, CS, Bardhan, R, Akin, D, Badve, S, Sturgis, J, Robinson, JP, Bashir, R, et al. A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 2007, 7:3759–3765.
Volodkin, DV, Skirtach, AG, Möhwald, H. Near‐IR remote release from assemblies of liposomes and nanoparticles. Angew Chemie Int Ed 2009, 48:1807–1809.
Lu, W, Singh, AK, Khan, SA, Senapati, D, Yu, H, Ray, PC. Gold nano‐popcorn‐based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface‐enhanced raman spectroscopy. J Am Chem Soc 2010, 132:18103–18114.
Kim, J, Park, S, Lee, JE, Jin, SM, Lee, JH, Lee, IS, Yang, I, Kim, J‐S, Kim, SK, Cho, M‐H, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chemie Int Ed 2006, 45:7754–7758.
Wijaya, A, Schaffer, SB, Pallares, IG, Hamad‐Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 2008, 3:80–86.
Chen, C‐C, Lin, Y‐P, Wang, C‐W, Tzeng, H‐C, Wu, C‐H, Chen, Y‐C, Chen, C‐P, Chen, L‐C, Wu, Y‐C. DNA‐gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 2006, 128:3709–3715.
Seo, WS, Lee, JH, Sun, X, Suzuki, Y, Mann, D, Liu, Z, Terashima, M, Yang, PC, McConnell, MV, Nishimura, DG, et al. FeCo/graphitic‐shell nanocrystals as advanced magnetic‐resonance‐imaging and near‐infrared agents. Nat Mater 2006, 5:971–976.
Huang, X, El‐Sayed, IH, Qian, W, El‐Sayed, MA. Cancer cell imaging and photothermal therapy in the near‐infrared region by using gold nanorods. J Am Chem Soc 2006, 128:2115–2120.
O’Neal, DP, Hirsch, LR, Halas, NJ, Payne, JD, West, JL. Photo‐thermal tumor ablation in mice using near infrared‐absorbing nanoparticles. Cancer Lett 2004, 209:171–176.
Roy, I, Ohulchanskyy, TY, Pudavar, HE, Bergey, EJ, Oseroff, AR, Morgan, J, Dougherty, TJ, Prasad, PN. Ceramic‐based nanoparticles entrapping water‐insoluble photosensitizing anticancer drugs: a novel drug‐carrier system for photodynamic therapy. J Am Chem Soc 2003, 125:7860–7865.
Zhou, M, Zhang, R, Huang, M, Lu, W, Song, S, Melancon, MP, Tian, M, Liang, D, Li, C. A chelator‐free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro‐PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 2010, 132: 15351–15358.
Nishiyama, N, Jang, W‐D, Kataoka, K. Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New J Chem 2007, 31:1074–1082.
Lovell, JF, Jin, CS, Huynh, E, Jin, H, Kim, C, Rubinstein, JL, Chan, WCW, Cao, W, Wang, LV, Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 2011, 10:324–332.
Reddy, GR, Bhojani, MS, McConville, P, Moody, J, Moffat, BA, Hall, DE, Kim, G, Koo, Y‐EL, Woolliscroft, MJ, Sugai, JV, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006, 12:6677–6686.
Xiao, L, Gu, L, Howell, SB, Sailor, MJ. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 2011, 5:3651–3659.
Khlebtsov, N, Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 2011, 40: 1647–1671.
Bloembergen, N. Solid state infrared quantum counters. Phys Rev Lett 1959, 2:84–85.
Liu, Q, Sun, Y, Yang, T, Feng, W, Li, C, Li, F. Sub‐10 nm hexagonal lanthanide‐doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 2011, 133:17122–17125.
Wang, F, Liu, X. Upconversion multicolor fine‐tuning: visible to near‐infrared emission from lanthanide‐doped NaYF4 nanoparticles. J Am Chem Soc 2008, 130:5642–5643.
Miller, MJ, Wei, SH, Parker, I, Cahalan, MD. Two‐photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 2002, 296: 1869–1873.
Zhan, Q, Qian, J, Liang, H, Somesfalean, G, Wang, D, He, S, Zhang, Z, Andersson‐Engels, S. Using 915 nm laser excited Tm3+/Er3+/Ho3+‐doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 2011, 5:3744–3757.
Xiong, L, Chen, Z, Tian, Q, Cao, T, Xu, C, Li, F. High contrast upconversion luminescence targeted imaging in vivo using peptide‐labeled nanophosphors. Anal Chem 2009, 81:8687–8694.
Salthouse, C, Hilderbrand, S, Weissleder, R, Mahmood, U. Design and demonstration of a small‐animal up‐conversion imager. Opt Express 2008, 16: 21731–21737.
Xu, CT, Axelsson, J, Andersson‐Engels, S. Fluorescence diffuse optical tomography using upconverting nanoparticles. Appl Phys Lett 2009, 94:251107.
Nyk, M, Kumar, R, Ohulchanskyy, TY, Bergey, EJ, Prasad, PN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up‐conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 2008, 8:3834–3838.
Xiong, L, Yang, T, Yang, Y, Xu, C, Li, F. Long‐term in vivo biodistribution imaging and toxicity of polyacrylic acid‐coated upconversion nanophosphors. Biomaterials 2010, 31:7078–7085.
Zhou, J, Sun, Y, Du, X, Xiong, L, Hu, H, Li, F. Dual‐modality in vivo imaging using rare‐earth nanocrystals with near‐infrared to near‐infrared (NIR‐to‐NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 2010, 31:3287–3295.
Cheng, L, Yang, K, Shao, M, Lu, X, Liu, Z. In vivo pharmacokinetics, long‐term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomed 2011, 6:1327–1340.
Qian, HS, Guo, HC, Ho, PC‐L, Mahendran, R, Zhang, Y. Mesoporous‐silica‐coated up‐conversion fluorescent nanoparticles for photodynamic therapy. Small 2009, 5:2285–2290.
Shan, J, Budijono, SJ, Hu, G, Yao, N, Kang, Y, Ju, Y, Prud’homme, RK. Pegylated composite nanoparticles containing upconverting phosphors and meso‐tetraphenyl porphine (TPP) for photodynamic therapy. Adv Funct Mater 2011, 21:2488–2495.
Wang, C, Tao, H, Cheng, L, Liu, Z. Near‐infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32: 6145–6154.
Dong, B, Xu, S, Sun, J, Bi, S, Li, D, Bai, X, Wang, Y, Wang, L, Song, H. Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem 2011, 21:6193–6200.
Li, Z, Barnes, JC, Bosoy, A, Stoddart, JF, Zink, JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 2012, 41:2590–2605.
Ambrogio, MW, Thomas, CR, Zhao, Y‐L, Zink, JI, Stoddart, JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 2011, 44:903–913.
Hudson, SP, Padera, RF, Langer, R, Kohane, DS. The biocompatibility of mesoporous silicates. Biomaterials 2008, 29:4045–4055.
Lu, J, Liong, M, Li, Z, Zink, JI, Tamanoi, F. Biocompatibility, biodistribution, and drug‐delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010, 6:1794–1805.
Soo Choi, H, Liu, W, Misra, P, Tanaka, E, Zimmer, JP, Itty Ipe, B, Bawendi, MG, Frangioni, JV. Renal clearance of quantum dots. Nat Biotech 2007, 25:1165–1170.
Kim, S‐W, Zimmer, JP, Ohnishi, S, Tracy, JB, Frangioni, JV, Bawendi, MG. Engineering InAsxP1‐x/InP/ZnSe III‐V alloyed core/shell quantum dots for the near‐infrared. J Am Chem Soc 2005, 127:10526–10532.
Zimmer, JP, Kim, S‐W, Ohnishi, S, Tanaka, E, Frangioni, JV, Bawendi, MG. Size series of small indium arsenide‐zinc selenide core‐shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 2006, 128:2526–2527.
Longmire, M, Choyke, PL, Kobayashi, H. Clearance properties of nano‐sized particles and molecules as imaging agents: considerations and caveats. Nanomed 2008, 3:703–717.
Chan, WCW, Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281:2016–2018.
Davis, ME, Chen, Z, Shin, DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008, 7:771–782.
Petros, RA, DeSimone, JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9:615–627.
Kong, G, Braun, RD, Dewhirst, MW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 2001, 61:3027–3032.
Detty, MR, Gibson, SL, Wagner, SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 2004, 47:3897–3915.
Bartlett, DW, Su, H, Hildebrandt, IJ, Weber, WA, Davis, ME. Impact of tumor‐specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 2007, 104:15549–15554.
Minchinton, AI, Tannock, IF. Drug penetration in solid tumours. Nat Rev Cancer 2006, 6:583–592.
Kohane, DS, Langer, R. Biocompatibility and drug delivery systems. Chem Sci 2010, 1:441–446.