El‐Sayed, MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 2001, 34:257–264.
Jensen, TR, Malinsky, MD, Haynes, CL, Van Duyne, RP. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 2000, 104:10549–10556.
Kelly, KL, Coronado, E, Zhao, LL, Schatz, GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003, 107:668–677.
Xia, Y, Halas, NJ. Shape‐controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 2005, 30:338–344.
Sonnichsen, C, Franzl, T, Wilk, T, Von Plessen, G, Feldmann, J. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 2002, 88:077402.
Burda, C, Chen, XB, Narayanan, R, El‐Sayed, MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005, 105:1025–1102.
Daniel, MC, Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum‐size‐related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004, 104:293–346.
Rosi, NL, Mirkin, CA. Nanostructures in biodiagnostics. Chem Rev 2005, 105:1547–1562.
Jackson, JB, Halas, NJ. Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 2001, 105:2743–2746.
Nicewarner‐Pena, SR, Freeman, RG, Reiss, BD, He, L, Pena, DJ, Walton, ID, Cromer, R, Keating, CD, Natan, MJ. Submicrometer metallic barcodes. Science 2001, 294:137–141.
Huang, X, Neretina, S, El‐Sayed, MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 2009, 21:4880–4910.
Nehl, CL, Liao, H, Hafner, JH. Optical properties of star‐shaped gold nanoparticles. Nano Lett 2006, 6:683–688.
Tao, AR, Habas, S, Yang, P. Shape control of colloidal metal nanocrystals. Small 2008, 4: 310–325.
Hu, M, Chen, J, Li, Z‐Y, Au, L, Hartland, GV, Li, X, Marquez, M, Xia, Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006, 35:1084–1094.
Murphy, CJ, Sau, TK, Gole, AM, Orendorff, CJ, Gao, J, Gou, L, Hunyadi, SE, Li, T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 2005, 109:13857–13870.
Murphy, CJ, Gole, AM, Hunyadi, SE, Stone, JW, Sisco, PN, Alkilany, A, Kinard, BE, Hankins, PL. Chemical sensing and imaging with metallic nanorods. Chem Commun 2008, 5:544–557.
Thomas, KG, Barazzouk, S, Ipe, BI, Joseph, STS, Kamat, PV. Uniaxial plasmon coupling through longitudinal self‐assembly of gold nanorods. J Phys Chem B 2004, 108:13066–13068.
Storhoff, JJ, Elghanian, R, Mucic, RC, Mirkin, CA, Letsinger, RL. One‐pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 1998, 120:1959–1964.
Hurst, SJ, Lytton‐Jean, AKR, Mirkin, CA. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 2006, 78:8313–8318.
Krug, J, Wang, G, Emory, S, Nie, S. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc 1999, 121:9208–9214.
Templeton, A, Hostetler, M, Warmoth, E, Chen, S, Hartshorn, C, Krishnamurthy, V, Forbes, M, Murray, R. Gateway reactions to diverse, polyfunctional monolayer‐protected gold clusters. J Am Chem Soc 1998, 120:4845–4849.
Alivisatos, AP, Johnsson, KP, Peng, XG, Wilson, TE, Loweth, CJ, Bruchez, MP, Schultz, PG. Organization of ‘nanocrystal molecules` using DNA. Nature 1996, 382: 609–611.
Claridge, SA, Goh, SL, Frachet, JMJ, Williams, SC, Micheel, CM, Alivisatos, AP. Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds. Chem Mater 2005, 17:1628–1635.
Storhoff, JJ, Lazarides, AA, Mucic, RC, Mirkin, CA, Letsinger, RL, Schatz, GC. What controls the optical properties of DNA‐linked gold nanoparticle assemblies? J Am Chem Soc 2000, 122:4640–4650.
Lim, D‐K, Jeon, K‐S, Kim, HM, Nam, J‐M, Suh, YD. Nanogap‐engineerable Raman‐active nanodumbbells for single‐molecule detection. Nat Mater 2010, 9:60–67.
Lim, D‐K, Jeon, K‐S, Hwang, J‐H, Kim, HK, Kwon, SH, Suh, YD, Nam, J‐M. Highly uniform and reproducible surface‐enhanced Raman scattering from DNA‐tailorable nanoparticles with 1‐nm interior gap. Nat Nanotech 2011, 6:452–460.
Link, S, Wang, ZL, El‐Sayed, MA. Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 1999, 103:3529–3533.
Cao, Y, Jin, R, Mirkin, CA. DNA‐modified core‐shell Ag/Au nanoparticles. J Am Chem Soc 2001, 123:7961–7962.
Yin, Y, Li, Z‐Y, Zhong, Z, Gates, B, Xia, Y, Venkateswaran, S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process. J Mater Chem 2002, 12:522–527.
Vidal, BC, Deivaraj, TC, Yang, J, Too, H‐P, Chow, G‐M, Gan, LM, Lee, JY. Stability and hybridization‐driven aggregation of silver nanoparticle‐oligonucleotide conjugates. New J Chem 2005, 29:812–816.
Lee, J‐S, Lytton‐Jean, AKR, Hurst, SJ, Mirkin, CA. Silver nanoparticle‐oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 2007, 7:2112–2115.
Prodan, E, Radloff, C, Halas, NJ, Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302:419–422.
Wang, H, Brandl, DW, Nordlander, P, Halas, NJ. Plasmonic nanostructures: artificial molecules. Acc Chem Res 2007, 40:53–62.
Lee, J‐H, Kim, G‐H, Nam, J‐M. Directional synthesis and assembly of bimetallic nanosnowmen with DNA. J Am Chem Soc 2012, 134:5456–5459.
Nam, J‐M, Stoeva, SI, Mirkin, CA. Bio‐bar‐code‐based DNA detection with PCR‐like sensitivity. J Am Chem Soc 2004, 126:5932–5933.
Yao, X, Li, X, Toledo, F, Zurita‐Lopez, C, Gutova, M, Momand, J, Zhou, F. Sub‐attomole oligonucleotide and p53 cDNA determinations via a high‐resolution surface plasmon resonance combined with oligonucleotide‐capped gold nanoparticle signal amplification. Anal Biochem 2006, 354:220–228.
Li, H, Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 2004, 101:14036–14039.
Lee, J‐S, Han, MS, Mirkin, CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles. Angew Chem Int Ed 2007, 46:4093–4096.
Xia, F, Zuo, X, Yang, R, Xiao, Y, Kang, D, Vallée‐Bélisle, A, Gong, X, Yuen, JD, Hsu, BBY, Heeger, AJ, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 2010, 107:10837–10841.
Wu, Y, Sefah, K, Liu, H, Wang, R, Tan, W. DNA aptamer‐micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A 2010, 107:5–10.
Kneipp, K, Kneipp, H, Itzkan, I, Dasari, RR, Feld, MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 1999, 99:2957–2976.
Kneipp, J, Kneipp, H, Kneipp, K. SERS‐a singlemolecule and nanoscale tool for bioanalytics. Chem Soc Rev 2008, 37:1052–1060.
Nie, S, Emory, SR. Probing single molecules and single nanoparticles by surface‐enhanced Raman scattering. Science 1997, 275:1102–1106.
Willets, KA, Van Duyne, RP. Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 2007, 58:267–297.
Elghanian, R, Storhoff, JJ, Mucic, RC, Letsinger, RL, Mirkin, CA. Selective colorimetric detection of polynucleotides based on the distance‐dependent optical properties of gold nanoparticles. Science 1997, 277:1078–1080.
Reynolds, RA, Mirkin, CA, Letsinger, RL. Homo‐geneous, nanoparticle‐based quantitative colorimetric detection of oligonucleotides. J Am Chem Soc 2000, 122:3795–3796.
Kim, J‐Y, Lee, J‐S. Synthesis and thermodynamically controlled anisotropic assembly of DNA‐silver nanoprism conjugates for diagnostic applications. Chem Mater 2010, 22:6684–6691.
Xu, W, Xue, X, Li, T, Zeng, H, Liu, X. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 2009, 48:6849–6852.
Xu, W, Xie, X, Li, D, Yang, Z, Li, T, Liu, X. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease‐assisted nanoparticle amplification (NEANA). Small 2012, 8:1846–1850.
Liu, J, Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Edn Eng 2006, 45:90–94.
Liu, J, Lu, Y. Preparation of aptamer‐linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protocols 2006, 1:246–252.
Liu, J, Lu, Y. A colorimetric lead biosensor using DNAzyme‐directed assembly of gold nanoparticles. J Am Chem Soc 2003, 125:6642–6643.
Liu, J, Lu, Y. Accelerated color change of gold nanoparticles assembled by dnazymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 2004, 126:12298–12305.
Lee, JS, Han, MS, Mirkin, CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles. Angew Chem Int Ed 2007, 46:4093–4096.
Xu, Y, Deng, L, Wang, H, Ouyang, X, Zheng, J, Li, J, Yang, R. Metal‐induced aggregation of mononucleotides‐stabilized gold nanoparticles: an efficient approach for simple and rapid colorimetric detection of Hg(II). Chem Commun 2011, 47:6039–6041.
Wang, WX, Liu, HJ, Liu, DS, Xu, YR, Yang, Y, Zhou, DJ. Use of the interparticle i‐motif for the controlled assembly of gold nanoparticles. Langmuir 2007, 23:11956–11959.
Sharma, J, Chhabra, R, Yan, H, Liu, Y. pH‐driven conformational switch of ‘I‐motif’ DNA for the reversible assembly of gold nanoparticles. Chem Commun 2007, 477–479.
Li, H, Rothberg, LJ. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 2004, 101:14036–14039.
Li, H, Rothberg, LJ. Label‐free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 2004, 126:10958–10961.
Wang, L, Liu, X, Hu, X, Song, S, Fan, C. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 2006, 3780–3782.
Wang, J, Wang, L, Liu, X, Liang, Z, Song, S, Li, W, Li, G, Fan, C. A gold nanoparticle‐based aptamer target binding readout for ATP assay. Adv Mater 2007, 19:3943–3946.
Wang, H, Xu, W, Zhang, H, Li, D, Yang, Z, Xie, X, Li, T, Liu, X. EcoRI‐modified gold nanoparticles for dual‐mode colorimetric detection of magnesium and pyrophosphate ions. Small 2011, 7:1987–1992.
Wei, H, Li, B, Li, J, Wang, E, Dong, S. Simple and sensitive aptamer‐based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 2007, 3735–3737.
Zhang, J, Wang, L, Pan, D, Song, S, Boey, FY, Zhang, H, Fan, C. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 2008, 4:1196–1200.
Kneipp, K, Wang, Y, Kneipp, H, Perelman, LT, Itzkan, I, Dasari, RR, Feld, MS. Single molecule detection using surface‐enhanced Raman scattering (SERS). Phys Rev Lett 1997, 78:1667–1670.
Moskovits, M. Surface‐enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 2005, 36:485–496.
Cao, YC, Jin, R, Mirkin, CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297:1536–1540.
Wang, Y, Wei, H, Li, B, Ren, W, Guo, S, Dong, S, Wang, E. SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem Commun 2007, 5220–5222.
Chen, JW, Liu, XP, Feng, KJ, Liang, Y, Jiang, JH, Shen, GL, Yu, RQ. Detection of adenosine using surface‐enhanced Raman scattering based on structure‐switching signaling aptamer. Biosens Bioelectron 2008, 24:66–71.
Braun, G, Lee, SJ, Dante, M, Nguyen, T‐Q, Moskovits, M, Reich, N. Surface‐enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 2007, 129:6378–6379.
Graham, D, Thompson, DG, Smith, WE, Faulds, K. Control of enhanced Raman scatteing using a DNA‐based assembly process of dye‐coded nanoparticles. Nat Nanotech 2008, 3:548–551.
Sisco, PN, Murphy, CJ. Surface‐coverage dependence of surface‐enhanced Raman scattering from gold nanocubes on self‐assembled monolayers of analyte. J Phys Chem A 2009, 113:3973–3978.
Xu, L, Kuang, H, Xu, C, Ma, W, Wang, L, Kotov, NA. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J Am Chem Soc 2012, 134:1699–1709.
Larmour, IA, Graham, D. Surface enhanced optical spectroscopies for bioanalysis. Analyst 2011, 136:3831–3853.
Fort, E, Grésillon, S. Surface enhanced fluorescence. J Phys D Appl Phys 2008, 41:013001.
Peng, H‐I, Miller, BL. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Analyst 2011, 136:436–447.
Goldys, EM, Xie, F. Metallic nanomaterials for sensitivity enhancement of fluorescence detection. Sensors 2008, 8:886–896.
Schneider, G, Decher, G, Nerambourg, N, Praho, R, Werts, MHV, Blanchard‐Desce, M. Distance‐dependent fluorescence quenching on gold nanoparticles ensheathed with layer‐by‐layer assembled polyelectrolytes. Nano Lett 2006, 6:530–536.
Zhang, J, Fu, Y, Chowdhury, MH, Lakowicz, JR. Metal‐enhanced single‐molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett 2007, 7:2101–2107.
Ming, T, Zhao, L, Yang, Z, Chen, H, Sun, L, Wang, J, Yan, C. Strong polarization dependence of plasmon‐enhanced fluorescence on single gold nanorods. Nano Lett 2009, 9:3896–3903.
Ming, T, Zhao, L, Chen, H, Woo, KC, Wang, J, Lin, H‐Q. Experimental evidence of plasmophores: plasmon‐directed polarized emission from gold nanorod ‐ fluorophore hybrid nanostructures. Nano Lett 2011, 11:2296–2303.
Ming, T, Chen, H, Jiang, R, Li, Q, Wang, J. Plasmon‐controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 2012, 3:191–202.
Malicka, J, Gryczynski, I, Lakowicz, JR. DNA hybridization assays using metal‐enhanced fluorescence. Biochem Biophys Res Commun 2003, 306:213–218.
Sabanayagam, CR, Lakowicz, JR. Increasing the sensitivity of DNA microarrays by metal‐enhanced fluorescence using surface‐bound silver nanoparticles. Nucleic Acids Res 2007, 35:e13.
Aslan, K, Malyn, SN, Geddes, CD. Fast and sensitive DNA hybridization assays using microwave‐accelerated metal‐enhanced fluorescence. Biochem Biophys Res Commun 2006, 348:612–617.
Aslan, K, Zhang, Y, Hibbs, S, Baillie, L, Previte, MJR, Geddes, CD. Microwave‐accelerated metal‐enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in %3C30 seconds. Analyst 2007, 132:1130–1138.
Kim, CK, Kalluru, RR, Singh, JP, Fortner, A, Griffin, J, Darbha, GK, Ray, PC. Gold‐nanoparticle‐based miniaturized laser‐induced fluorescence probe for specific DNA hybridization detection: studies on size‐dependent optical properties. Nanotechnology 2006, 17:3085–3093.
Peng, H‐I, Strohsahl, CM, Leach, KE, Krauss, TD, Miller, BL. Label‐free DNA detection on nano‐structured Ag surfaces. ACS Nano 2009, 3:2265–2273.
Song, S, Liang, Z, Zhang, J, Wang, L, Li, G, Fan, C. Gold‐nanoparticle‐based multicolor nanobeacons for sequence‐specific DNA analysis. Angew Chem Int Ed 2009, 48:8670–8674.
Wang, H, Wang, Y, Jin, J, Yang, R. Gold nanoparticle‐based colorimetric and “turn‐on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 2008, 80:9021–9028.
Li, M, Wang, Q, Shi, X, Hornak, LA, Wu, N. Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem 2011, 83:7061–7065.
Chen, Y, O`Donoghue, MB, Huang, Y‐F, Kang, H, Phillips, JA, Chn, X, Estevez, M‐C, Tan, W. A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 2010, 132:16559–16570.
Zheng, D, Seferos, DS, Giljohann, DA, Patel, PC, Mirkin, CA. Aptamer nano‐flares for molecular detection in living cells. Nano Lett 2009, 9:3258–3261.
Imahori, H, Kashiwagi, Y, Hanada, T, Endo, Y, Nishimura, Y, Yamazaki, I, Fukuzumi, S. Metal and size effects on structures and photophysical properties of porphyrin‐modified metal nanoclusters. J Mater Chem 2003, 13:2890–2898.
Wu, Z, Jin, R. On the ligand`s role in the fluorescence of gold nanoclusters. Nano Lett 2010, 10:2568–2573.
Chen, W‐Y, Lan, G‐Y, Chang, H‐T. Use of fluorescent DNA‐templated gold/silver nanoclusters for the detection of sulfide ions. Anal Chem 2011, 83:9450–9455.
Gwinn, EG, O’Neill, P, Guerrero, AJ, Bouwmeester, D, Fygenson, DK. Sequence‐dependent fluorescence of DNA‐hosted silver nanoclusters. Adv Mater 2008, 20:279–283.
Yeh, H‐C, Sharma, J, Han, JJ, Martinez, JS, Werner, JH. A DNA–silver nanocluster probe that fluoresces upon hybridization. Nano Lett 2010, 10:3106–3110.
Deng, L, Zhou, Z, Li, J, Li, T, Dong, S. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn‐on detection of Hg 2+ ions. Chem Commun 2011, 47:11065–11067.
Lan, G‐Y, Huang, C‐C, Chang, H‐T. Silver nano‐clusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 2010, 46:1257–1259.
Ye, B‐C, Yin, B‐C. Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem Int Ed 2008, 47:8386–8389.
Yin, B‐C, Zuo, P, Huo, H, Zhong, X, Ye, B‐C. DNAzyme self‐assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal Biochem 2010, 401:47–52.
Nelson, BP, Grimsrud, TE, Liles, MR, Goodman, RM, Corn, RM. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 2001, 73:1–7.
Smith, EA, Thomas, WD, Kiessling, LL, Corn, RM. Surface plasmon resonance imaging studies of protein‐carbohydrate interactions. J Am Chem Soc 2003, 125:6140–6148.
Lyon, LA, Musick, MD, Natan, MJ. Colloidal Au‐enhanced surface plasmon resonance immunosensing. Anal Chem 1998, 70:5177–5183.
Lyon, LA, Peña, DJ, Natan, MJ. Surface plasmon resonance of Au colloid‐modified Au films: particle size dependence. J Phys Chem B 1999, 103:5826–5831.
Hutter, E, Cha, S, Liu, JF, Park, J, Yi, J, Fendler, JH, Roy, D. Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging. J Phys Chem B 2001, 105:8–12.
Hu, R, Zhang, X‐B, Kong, R‐M, Zhao, X‐H, Jiang, J, Tan, W. Nucleic acid‐functionalized nanomaterials for bioimaging applications. J Mater Chem 2011, 21:16323–16334.
He, L, Musick, MD, Nicewarner, SR, Salinas, FG, Benkovic, SJ, Natan, MJ, Keating, CD. Colloidal Au‐enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 2000, 122:9071–9077.
D’Agata, R, Corradini, R, Grasso, G, Marchelli, R, Spoto, G. Ultrasensitive detection of DNA by PNA and nanoparticle‐enhanced surface plasmon resonance imaging. Chembiochem 2008, 9:2067–2070.
Fang, S, Lee, HJ, Wark, AW, Corn, RM. Attomole microarray detection of microRNAs by nanoparticle‐amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 2006, 128:14044–14046.
Li, Y, Wark, AW, Lee, HJ, Corn, RM. Single‐nucleotide polymorphism genotyping by nanoparticle‐enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 2006, 78:3158–3164.
Gifford, LK, Sendroiu, IE, Corn, RM, Luptaik, A. Attomole detection of mesophilic DNA polymerase products by nanoparticle‐enhanced surface plasmon resonance imaging on glassified gold surfaces. J Am Chem Soc 2010, 132:9265–9267.
Sendroiu, IE, Gifford, LK, Luptaik, A, Corn, RM. Ultrasensitive DNA microarray biosensing via in situ RNA transcription‐based amplification and nanoparticle‐enhanced SPR imaging. J Am Chem Soc 2011, 133:4271–4273.