Lauffer, RB. Paramagnetic metal‐complexes as water proton relaxation agents for NMR Imaging‐theory and design. Chem Rev 1987, 87:901–927.
Caravan, P, Ellison, JJ, McMurry, TJ, Lauffer, RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 1999, 99: 2293–2352.
Damadian, R. Tumor detection by nuclear magnetic resonance. Science 1971, 171:1151–1153.
Werner, EJ, Datta, A, Jocher, CJ, Raymond, KN. High‐relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem Int Ed 2008, 47:8568–8580.
Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 2006, 35:512–523.
Villaraza, AJL, Bumb, A, Brechbiel, MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 2010, 110: 2921–2959.
Aime, S, Crich, SG, Gianolio, E, Giovenzana, GB, Tei, L, Terreno, E. High sensitivity lanthanide(III) based probes for MR‐medical imaging. Coord Chem Rev 2006, 250: 1562–1579.
Kamaly, N, Miller, AD, Bell, JD. Chemistry of tumour targeted T1 based MRI contrast agents. Curr Top Med Chem 2010, 10:1158–1183.
Gore, JC, Manning, HC, Quarles, CC, Waddell, KW, Yankeelov, TE. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging 2011, 29: 587–600.
Glunde, K, Artemov, D, Penet, MF, Jacobs, MA, Bhujwalla, ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev 2010, 110:3043–3059.
Caravan, P, Cloutier, NJ, Greenfield, MT, McDermid, SA, Dunham, SU, Bulte, JW, Amedio, JC , Jr., Looby, RJ, Supkowski, RM, Horrocks, WD , Jr. et al. The interaction of MS‐325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 2002, 124: 3152–3162.
Rohrer, M, Bauer, H, Mintorovitch, J, Requardt, M, Weinmann, HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005, 40:715–724.
Lansman, JB. Blockade of current through single calcium channels by trivalent lanthanide cations‐effect of ionic radius on the rates of ion entry and exit. J Gen Physiol 1990, 95:679–696.
Biagi, BA, Enyeart, JJ. Gadolinium blocks low‐threshold and high‐threshold calcium currents in pituitary‐cells. Am J Physiol 1990, 259:C515–C520.
Laurent, S, Elst, LV, Copoix, F, Muller, RN. Stability of MRI paramagnetic contrast media—a proton relaxometric protocol for transmetallation assessment. Invest Radiol 2001, 36:115–122.
Greenberg, SA. Zinc transmetallation and gadolinium retention after MR imaging: case report. Radiology 2010, 257:670–673.
Thomsen, HS. Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 2006, 16:2619–2621.
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Del Rev 2011, 63: 131–135.
Weinmann, HJ, Brasch, RC, Press, WR, Wesbey, GE. Characteristics of gadolinium‐DTPA complex‐a potential NMR contrast agent. Am J Roentgenol 1984, 142: 619–624.
Wiener, EC, Brechbiel, MW, Brothers, H, Magin, RL, Gansow, OA, Tomalia, DA, Lauterbur, PC. Dendrimer‐based metal‐chelates‐a new class of magnetic‐resonance‐imaging contrast agents. Magn Reson Med 1994, 31: 1–8.
Perazella, MA. Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephro 2009, 4:461–469.
Leach, MO, Brindle, KM, Evelhoch, JL, Griffiths, JR, Horsman, MR, Jackson, A, Jayson, G, Judson, IR, Knopp, MV, Maxwell, RJ, et al. Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 2003, 76:S87–S91.
Botta, M, Tei, L. Relaxivity enhancement in macromolecular and nanosized GdIII‐based MRI contrast agents. Eur J Inorg Chem 2012, 1945–1960.
Spanoghe, M, Lanens, D, Dommisse, R, Vanderlinden, A, Alderweireldt, F. Proton relaxation enhancement by means of serum‐albumin and poly‐L‐lysine labeled with DTPA‐Gd3+‐relaxivities as a function of molecular‐weight and conjugation efficiency. Magn Reson Imaging 1992, 10:913–917.
Port, M, Corot, C, Rousseaux, O, Raynal, I, Devoldere, L, Idee, JM, Dencausse, A, Le Greneur, S, Simonot, C, Meyer, D. P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. Magn Reson Mater Phy Biol Med 2001, 12: 121–127.
Fries, P, Runge, VM, Bucker, A, Schurholz, H, Reith, W, Robert, P, Jackson, C, Lanz, T, Schneider, G. Brain tumor enhancement in magnetic resonance imaging at 3 tesla intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular Gd‐chelate in a rat brain tumor model. Invest Radiol 2009, 44:200–206.
Daldrup, H, Shames, DM, Wendland, M, Okuhata, Y, Link, TM, Rosenau, W, Lu, Y, Brasch, RC. Correlation of dynamic contrast‐enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small‐molecular contrast media. Pediatr Radiol 1998, 28:67–78.
Ogan, MD, Schmiedl, U, Moseley, ME, Grodd, W, Paajanen, H, Brasch, RC. Albumin labeled with Gd‐DTPA‐an intravascular contrast‐enhancing agent for magnetic‐resonance blood pool imaging—preparation and characterization. Invest Radiol 1987, 22:665–671.
Schmiedl, U, Ogan, M, Paajanen, H, Marotti, M, Crooks, LE, Brito, AC, Brasch, RC. Albumin labeled with Gd‐DTPA as an intravascular, blood pool enhancing agent for MR imaging‐biodistribution and imaging studies. Radiology 1987, 162:205–210.
Raatschen, HJ, Simon, GH, Fu, YJ, Sennino, B, Shames, DM, Wendland, MF, McDonald, DM, Brasch, RC. Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats. Radiology 2008, 247:391–399.
Dafni, H, Kim, SJ, Bankson, JA, Sankaranaravanapillai, M, Ronen, SM. Macromolecular dynamic contrast‐enhanced (DCE)‐MRI detects reduced vascular permeability in a prostate cancer bone metastasis model following anti‐platelet‐derived growth factor receptor (PDGFR) therapy, indicating a drop in vascular endothelial growth factor receptor (VEGFR) activation. Magn Reson Med 2008, 60:822–833.
Bhujwalla, ZM, Artemov, D, Natarajan, K, Solaiyappan, M, Kollars, P, Kristjansen, PEG. Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP‐470. Clin Cancer Res 2003, 9:355–362.
Sherry, AD, Cacheris, WP, Kuan, KT. Stability‐constants for Gd3+ binding to model DTPA‐conjugates and DTPA‐proteins‐implications for their use as magnetic‐resonance contrast agents. Magn Reson Med 1988, 8: 180–190.
Baxter, AB, Melnikoff, S, Stites, DP, Brasch, RC. Immunogenicity of gadolinium‐based contrast agents for magnetic‐resonance‐imaging‐induction and characterization of antibodies in animals. Invest Radiol 1991, 26: 1035–1040.
Schuhmanngiampieri, G, Schmittwillich, H, Frenzel, T, Press, WR, Weinmann, HJ. In vivo and in vitro evaluation of Gd‐DTPA‐polylysine as a macromolecular contrast agent for magnetic‐resonance‐imaging. Invest Radiol 1991, 26:969–974.
Curtet, C, Maton, F, Havet, T, Slinkin, M, Mishra, A, Chatal, JF, Muller, RN. Polylysine‐Gd‐DTPAn and polylysine‐Gd‐DOTAn coupled to anti‐CEA F(ab′)2 fragments as potential immunocontrast agents. Relaxometry, biodistribution, and magnetic resonance imaging in nude mice grafted with human colorectal carcinoma. Invest Radiol 1998, 33:752–761.
Vexler, VS, Clement, O, Schmittwillich, H, Brasch, RC. Effect of varying the molecular‐weight of the MR contrast agent Gd‐DTPA‐polylysine on blood pharmacokinetics and enhancement patterns. J Magn Reson Imaging 1994, 4:381–388.
Wendland, MF, Saeed, M, Yu, KK, Roberts, TPL, Lauerma, K, Derugin, N, Varadarajan, J, Watson, AD, Higgins, CB. Inversion‐recovery EPI of bolus transit in rat myocardium using intravascular and extravascular gadolinium‐based MR contrast‐media‐dose effects on peak signal enhancement. Magn Reson Med 1994, 32: 319–329.
Desser, TS, Rubin, DL, Muller, HH, Qing, F, Khodor, S, Zanazzi, G, Young, SW, Ladd, DL, Wellons, JA, Kellar, KE, et al. Dynamics of tumor imaging with Gd‐DTPA polyethylene‐glycol polymers‐dependence on molecular‐weight. J Magn Reson Imaging 1994, 4: 467–472.
Frank, H, Weissleder, R, Bogdanov, AA, Brady, TJ. Detection of pulmonary emboli by using MR‐angiography with mPEG‐Pl‐GdDTPA‐an experimental‐study in rabbits. Am J Roentgenol 1994, 162:1041–1046.
Vanhecke, P, Marchal, G, Bosmans, H, Johannik, K, Jiang, Y, Vogler, H, Vanongeval, C, Baert, AL, Speck, U. NMR imaging study of the pharmacodynamics of polylysine‐gadolinium‐DTPA in the rabbit and the rat. Magn Reson Imaging 1991, 9:313–321.
Wang, SC, Wikstrom, MG, White, DL, Klaveness, J, Holtz, E, Rongved, P, Moseley, ME, Brasch, RC. Evaluation of Gd‐DTPA labeled dextran as an intravascular MR contrast agent‐imaging characteristics in normal rat‐tissues. Radiology 1990, 175:483–488.
Rebizak, R, Schaefer, M, Dellacherie, E. Polymeric conjugates of Gd3+‐diethylenetriaminepentaacetic acid and dextran. 2. Influence of spacer arm length and conjugate molecular mass on the paramagnetic properties and some biological parameters. Bioconjugate Chem 1998, 9:94–99.
Sirlin, CB, Vera, DR, Corbeil, JA, Caballero, MB, Buxton, RB, Mattrey, RF. Gadolinium‐DTPA‐dextran: a macromolecular MR blood pool contrast agent. Acad Radiol 2004, 11:1361–1369.
Armitage, FE, Richardson, DE, Li, KCP. 1990, 1: 365–374.
Adam, G, Neuerburg, J, Spuntrup, E, Muhler, A, Scherer, K, Gunther, RW. Gd‐DTPA‐cascade‐polymer‐potential blood‐pool contrast agent for MR‐imaging. J Magn Reson Imaging 1994, 4:462–466.
Venditto, VJ, Regino, CAS, Brechbiel, MW. PAMAM dendrimer based macromolecules as improved contrast agents. Mol Pharm 2005, 2:302–311.
Langereis, S, de Lussanet, QG, van Genderen, MHP, Backes, WH, Meijer, EW. Multivalent contrast agents based on gadolinium‐diethylenetriaminepentaacetic acid‐terminated poly(propylene imine) dendrimers for magnetic resonance imaging. Macromolecules 2004, 37: 3084–3091.
Langereis, S, de Lussanet, QG, van Genderen, MHP, Meijer, EW, Beets‐Tan, RGH, Griffioen, AW, van Engelshoven, JMA, Backes, WH. Evaluation of Gd(III)DTPA‐terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 2006, 19:133–141.
Luo, K, Liu, G, She, WC, Wang, QY, Wang, G, He, B, Ai, H, Gong, QY, Song, B, Gu, ZW. Gadolinium‐labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 2011, 32:7951–7960.
Kobayashi, H, Brechbiel, MW. Dendrimer‐based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2003, 2:1–10.
Kobayashi, H, Brechbiel, MW. Nano‐sized MRI contrast agents with dendrimer cores. Adv Drug Del Rev 2005, 57:2271–2286.
Sato, N, Kobayashi, H, Hiraga, A, Saga, T, Togashi, K, Konishi, J, Brechbiel, MW. Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med 2001, 46:1169–1173.
Kobayashi, H, Sato, N, Hiraga, A, Saga, T, Nakamoto, Y, Ueda, H, Konishi, J, Togashi, K, Brechbiel, MW. 3D‐micro‐MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn Reson Med 2001, 45:454–460.
Lu, ZR, Mohs, AM, Zong, Y, Feng, Y. Polydisulfide Gd(III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents. Int J Nanomed 2006, 1:31–40.
Lu, ZR, Wu, XM. Polydisulfide‐based biodegradable macromolecular magnetic resonance imaging contrast agents. Isr J Chem 2010, 50:220–232.
Lu, ZR, Parker, DL, Goodrich, KC, Wang, X, Dalle, JG, Buswell, HR. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn Reson Med 2004, 51:27–34.
Zong, YD, Wang, XH, Goodrich, KC, Mohs, AM, Parker, DL, Lu, ZR. Contrast‐enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor‐bearing mice. Magn Reson Med 2005, 53: 835–842.
Zong, YD, Wang, XL, Jeong, EK, Parker, DL, Lu, ZR. Structural effect on degradability and in vivo contrast enhancement of polydisulfide Gd(III) complexes as biodegradable macromolecular MRI contrast agents. Magn Reson Imaging 2009, 27:503–511.
Papahadjopoulos, D, Allen, TM, Gabizon, A, Mayhew, E, Matthay, K, Huang, SK, Lee, KD, Woodle, MC, Lasic, DD, Redemann, C, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991, 88:11460–11464.
Unger, EC, Winokur, T, MacDougall, P, Rosenblum, J, Clair, M, Gatenby, R, Tilcock, C. Hepatic metastases: liposomal Gd‐DTPA‐enhanced MR imaging. Radiology 1989, 171:81–85.
Unger, EC, Macdougall, P, Cullis, P, Tilcock, C. Liposomal Gd‐DTPA‐effect of encapsulation on enhancement of hepatoma model by MRI. Magn Reson Imaging 1989, 7:417–423.
Bui, T, Stevenson, J, Hoekman, J, Zhang, SR, Maravilla, K, Ho, RJY. Novel Gd nanoparticles enhance vascular contrast for high‐resolution magnetic resonance imaging. PLoS One 2010, 5:e13082.
Hak, S, Sanders, HMHF, Agrawal, P, Langereis, S, Grull, H, Keizer, HM, Arena, F, Terreno, E, Strijkers, GJ, Nicolay, K. A high relaxivity Gd(III)DOTA‐DSPE‐based liposomal contrast agent for magnetic resonance imaging. Eur J Pharm Biopharm 2009, 72:397–404.
Mulder, WJM, Strijkers, GJ, van Tilborg, GAF, Griffioen, AW, Nicolay, K. Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging. NMR Biomed 2006, 19:142–164.
Tilcock, C, Unger, E, Cullis, P, Macdougall, P. Liposomal Gd‐DTPA‐preparation and characterization of relaxivity. Radiology 1989, 171:77–80.
Unger, E, Shen, D, Wu, GL, Fritz, T. Liposomes as MR contrast agents‐pros and cons. Magn Reson Med 1991, 22:304–308.
Ghaghada, KB, Ravoori, M, Sabapathy, D, Bankson, J, Kundra, V, Annapragada, A. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS One 2009, 4:e7628. pii.
Krauze, MT, Forsayeth, J, Park, JW, Bankiewicz, KS. Real‐time imaging and quantification of brain delivery of liposomes. Pharm Res 2006, 23:2493–2504.
Mamot, C, Nguyen, JB, Pourdehnad, M, Hadaczek, P, Saito, R, Bringas, JR, Drummond, DC, Hong, KL, Kirpotin, DB, McKnight, T, et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection‐enhanced delivery. J Neurooncol 2004, 68: 1–9.
Karathanasis, E, Park, J, Agarwal, A, Patel, V, Zhao, F, Annapragada, AV, Hu, X, Bellamkonda, RV. MRI mediated, non‐invasive tracking of intratumoral distribution of nanocarriers in rat glioma. Nanotechnology 2008, 19:315109.pp.
Saito, R, Bringas, JR, McKnight, TR, Wendland, MF, Mamot, C, Drummond, DC, Kirpotin, DB, Park, JW, Berger, MS, Bankiewiez, KS. Distribution of liposomes into brain and rat brain tumor models by convection‐enhanced delivery monitored with magnetic resonance imaging. Cancer Res 2004, 64:2572–2579.
Park, JA, Lee, JJ, Jung, JC, Yu, DY, Oh, C, Ha, S, Kim, TJ, Chang, YM. Gd‐DOTA conjugate of RGD as a potential tumor‐targeting MRI contrast agent. ChemBioChem 2008, 9:2811–2813.
Pilch, J, Brown, DM, Komatsu, M, Jarvinen, TA, Yang, M, Peters, D, Hoffman, RM, Ruoslahti, E. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci USA 2006, 103: 2800–2804.
Ye, FR, Jeong, EK, Jia, ZJ, Yang, TX, Parker, D, Lu, ZR. A peptide targeted contrast agent specific to fibrin‐fibronectin complexes for cancer molecular imaging with MRI. Bioconjugate Chem 2008, 19:2300–2303.
Ye, FR, Jeong, EK, Parker, D, Lu, ZR. Evaluation of CLT1‐(Gd‐DTPA) for MR molecular imaging in a mouse breast cancer model. Chin J Magn Reson Imaging 2011, 2:325–330.
Artemov, D, Mori, N, Ravi, R, Bhujwalla, ZM. Magnetic resonance molecular imaging of the HER‐2/neu receptor. Cancer Res 2003, 63:2723–2727.
Artemov, D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 2003, 90: 518–524.
Chen, K, Xie, J, Chen, XY. RGD‐human serum albumin conjugates as ffficient tumor targeting probes. Mol Imaging 2009, 8:65–73.
Qiao, JJ, Li, SY, Wei, LX, Jiang, J, Long, R, Mao, H, Wei, L, Wang, LY, Yang, H, Grossniklaus, HE, et al. HER2 targeted molecular MR imaging using a de novo designed protein contrast agent. PLoS One 2011, 6:e18103.
Paganelli, G, Bartolomei, M, Ferrari, M, Cremonesi, M, Broggi, G, Maira, G, Sturiale, C, Grana, C, Prisco, G, Gatti, M, et al. Pre‐targeted locoregional radioimmunotherapy with 90Y‐biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm 2001, 16:227–235.
Xu, H, Regino, CAS, Koyama, Y, Hama, Y, Gunn, AJ, Bernardo, M, Kobayashi, H, Choyke, PL, Brechbiel, MW. Preparation and preliminary evaluation of a biotin‐targeted, lectin‐targeted dendrimer‐based probe for dual‐modality magnetic resonance and fluorescence Imaging. Bioconjugate Chem 2007, 18:1474–1482.
Huang, RQ, Han, L, Li, JF, Liu, SH, Shao, K, Kuang, YY, Hu, X, Wang, XX, Lei, H, Jiang, C. Chlorotoxin‐modified macromolecular contrast agent for MRI tumor diagnosis. Biomaterials 2011, 32:5177–5186.
Han, LA, Li, JF, Huang, SX, Huang, RQ, Liu, SH, Hu, X, Yi, PW, Shan, D, Wang, XX, Lei, H, et al. Peptide‐conjugated polyamidoamine dendrimer as a nanoscale tumor‐targeted T1 magnetic resonance imaging contrast agent. Biomaterials 2011, 32:2989–2998.
Tan, MQ, Wu, XM, Jeong, EK, Chen, QJ, Lu, ZR. Peptide‐targeted nanoglobular Gd‐DOTA monoamide conjugates for magnetic resonance cancer molecular imaging. Biomacromolecules 2010, 11:754–761.
Swanson, SD, Kukowska‐Latallo, JF, Patri, AK, Chen, CY, Ge, S, Cao, ZY, Kotlyar, A, East, AT, Baker, JR. Targeted gadolinium‐loaded dendrimer nanoparticles for tumor‐specific magnetic resonance contrast enhancement. Int J Nanomed 2008, 3:201–210.
Konda, SD, Aref, M, Wang, S, Brechbiel, M, Wiener, EC. Specific targeting of folate‐dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magn Reson Mater Phys Biol Med 2001, 12:104–113.
Lucock, M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 2000, 71:121–138.
Lu, YJ, Low, PS. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immun 2002, 51: 153–162.
Reddy, JA, Xu, L‐C, Parker, N, Vetzel, M, Leamon, CP. Preclinical evaluation of 99mTc‐EC20 for imaging folate receptor–positive tumors. J Nucl Med 2004, 45: 857–866.
Parker, N, Turk, MJ, Westrick, E, Lewis, JD, Low, PS, Leamon, CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005, 338: 284–293.
Kamaly, N, Kalber, T, Thanou, M, Bell, JD, Miller, AD. Folate receptor targeted bimodal liposomes for tumor magnetic resonance imaging. Bioconjugate Chem 2009, 20:648–655.
Vaccaro, M, Accardo, A, D`Errico, G, Schillen, K, Radulescu, A, Tesauro, D, Morelli, G, Paduano, L. Peptides and Gd complexes containing colloidal assemblies as tumor‐specific contrast agents in MRI: physicochemical characterization. Biophys J 2007, 93:1736–1746.
Accardo, A, Tesauro, D, Roscigno, P, Gianolio, E, Paduano, L, D`Errico, G, Pedone, C, Morelli, G. Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI. J Am Chem Soc 2004, 126:3097–3107.
Sipkins, DA, Cheresh, DA, Kazemi, MR, Nevin, LM, Bednarski, MD, Li, KCP. Detection of tumor angiogenesis in vivo by ανβ3‐targeted magnetic resonance imaging. Nat Med 1998, 4:623–626.
Storrs, RW, Tropper, FD, Li, HY, Song, CK, Kuniyoshi, JK, Sipkins, DA, Li, KCP, Bednarski, MD. Paramagnetic polymerized liposomes ‐ synthesis, characterization, and applications for magnetic‐resonance‐imaging. J Am Chem Soc 1995, 117:7301–7306.